Obstacle Detection Algorithms for Aircraft Navigation

Final Technical Report for NASA Grant NAG2-1152
"Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation"
Period of the Grant: August 1, 1997 to December 31, 1999

Submitted to
NASA Ames Research Center
Technical Officer: Leland S. Stone
Mail Stop: 262-2
Moffett Field, California 94035

by

Rangachar Kasturi, Octavia Camps and Lee Coraor
Principal Investigators
Tel: (814) 863-4254 Fax: (814) 865-3176
E-Mail: {kasturi, camps, coraor}@cse.psu.edu

Graduate Students:
Tarak Gandhi
Kerry Hartman
Mau-Tsuen Yang

January 28, 2000

{/ Technical Report ;

~_ CSE-00-002
Department of Computer Science and Engineering
~ The Pennsylvania State University
University Park, Pennsylvania 16802

Obstacle Detection Algorithms for Aircraft Navigation

Final Technical Report for NASA Grant NAG2-1152
""Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation"
Period of the Grant: August 1, 1997 to December 31, 1999

Submitted to
NASA Ames Research Center
Technical Officer: Leland S. Stone
Mail Stop: 262-2
Moffett Field, California 94035

by

Rangachar Kasturi, Octavia Camps and Lee Coraor
Principal Investigators
Tel: (814) 863-4254 Fax: (814) 865-3176
E-Mail: {kasturi, camps, coraor}@cse.psu.edu

Graduate Students:
Tarak Gandhi
Kerry Hartman
Mau-Tsuen Yang

January 28, 2000

Technical Report
CSE-00-002
Department of Computer Science and Engineering
The Pennsylvania State University
University Park, Pennsylvania 16802

Summary of Research

The research reported here is a part of NASA’s Synthetic Vision System (SVS) project for the
development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the
SVS is a module for detection of potential obstacles in the aircraft’s flight path by analyzing the
images captured by an on-board camera in real-time. Design of such a module includes the
selection and characterization of robust, reliable, and fast techniques and their implementation
for execution in real-time. This report describes the results of our research in realizing such a
design. It is organized into three parts as described below.

Part 1. Data modeling and camera characterization: A critical component of the vision
system is the imaging camera. Understanding the imaging characteristics of the camera as well
as its limitations based on an accurate model is the first step in the design of the complete
system. In this part of the report we describe a systematic procedure and an experimental
protocol to measure the spatial and temporal noise in a digital camera. Specifically, we describe
the model and the measured characteristics of a Kodak Megaplus ES 1.0 digital camera
including its dark-field response, photo response nonuniformities, charge transfer efficiency, and

inter-pixel and other noises.

Part I1. Algorithms for detecting airborne obstacles: Methods used for detecting airborne
obstacles using image sequences obtained from a camera mounted on a test aircraft are described
in this part. The performance of detection algorithms is characterized in the presence of camera
noise using theoretical and experimental methods. The problem of hazard detection in the
presence of background clutter in the image either due to clouds or the landscape below the
horizon is addressed. Algorithm fusion to overcome the limitation of individual algorithms is
studied. The image processing and tracking algorithms are described in this part and their
implementation details are presented in Part IIL

Part II1. Real-time implementation of obstacle detection algorithms on the Datacube
MaxPCI architecture: We describe the computational requirements and time-complexities of
the target detection algorithms and their implementation in a parallel/pipe-line architecture. In
particular, we describe results of our implementation of these algorithms on the Datacube
MaxPCI architecture. We describe the results of the flight tests conducted to evaluate the real-

time performance of the system.

A list of publications resulting from this grant as well as a list of relevant publications resulting
from prior NASA grants on this topic are presented in the following pages. This research did

not result in any inventions.

List of Publications Resulting from this Grant

T. Gandhi, M. Yang, R. Kasturi, O. Camps, and L. Coraor. Detection of
Obstacles in the Flight Path of an Aircraft. Under preparation for submission to
the IEEE Transactions on Pattern Analysis and Machine Intelligence.

M. Yang, T. Gandhi, R. Kasturi, L. Coraor O. Camps, and J. McCandless. Real-
Time Implementation of Obstacle Detection Algorithms on a Datacube MaxPClI
Architecture. Submitted to the Real Time Imaging Journal.

. T. Gandhi, M. Yang, R. Kasturi, O. Camps, and L. Coraor. Experimental and
Theoretical Performance Characterization of Obstacle Detection Algorithms.
Under preparation for submission to the /EEE Transactions on Image Processing.

T. Gandhi and R. Kasturi. Application of Planar Motion Segmentation for Scene
Text Extraction. Submitted to the /EEE Transactions on Pattern Analysis and
Machine Intelligence.

M. Yang, T. Gandhi, R. Kasturi, L. Coraor O. Camps, and J. McCandless.
Capturing, Recording and Processing of High Resolution Digital Images for Real-
time Applications. Submitted to the /APR [nternational Conference on Pattern
Recognition, September 2000.

T. Gandhi and R. Kasturi. Application of Planar Motion Segmentation for Scene
Text Extraction. Submitted to the IAPR International Conference on Pattern
Recognition, September 2000.

T. Gandhi, M. Yang, R. Kasturi, O. Camps, and L. Coraor. Detection of
Obstacles in the Flight Path of an Aircraft. Submitted to the IEEE Conference on
Computer Vision and Pattern Recognition, June 2000.

R. Kasturi, O. Camps, L. Coraor, K. Hartman, T. Gandhi, and M. Yang.
Performance Characterization of Target Detection Algorithms for Aircraft
Navigation. Draft Technical report submitted to NASA Ames Research Center,
Department of Computer Science and Engineering, The Pennsylvania State
University, 1998.

R. Kasturi and O. Camps. Target Detection Procedures and Elementary
Operations for their Parallel Implementation. Technical report CSE-97-021,
Department of Computer Science and Engineering, The Pennsylvania State
University, December 1997.

List of Publications of Related Work Supported under

1.

10.

Prior Grants

R. Kasturi, O. Camps, T. Gandhi, and S. Devadiga. Detection of Obstacles using
Ego-Motion Compensation and Tracking of Significant Features. To appear in
Image Vision and Computing.

S. Devadiga, O. Camps, and R. Kasturi. Detection of Obstacles in Monocular
Image Sequences. Technical Report CSE-97-006, Department of Computer
Science and Engineering, Pennsylvania State University, July 1997.

R. Kasturi, O. Camps, T. Gandhi, and S. Devadiga. Detection of Obstacles using
Ego-Motion Compensation and Tracking of Significant Features. Workshop on
Applications of Computer Vision, Sarasota, FL, 168-173, December 1996.

T. Gandhi, S. Devadiga, R. Kasturi, and O. Camps. Detection of Obstacles using
Ego-Motion Compensation and Tracking of Significant Features. Technical
Report CSE-96-045, Department of Computer Science and Engineering,
Pennsylvania State University, June 1996.

Y. Tang, and R. Kasturi. Tracking Moving Objects During Low Altitude Flight.
Machine Vision and Applications, 9(1):20-31, 1996.

R. Kasturi, O. Camps, T. Gandhi, and S. Devadiga. Algorithms for Detection of
Objects in Image Sequences Captured from an Airborne Imaging System.
Technical Report CSE-95-026, Department of Computer Science and
Engineering, Pennsylvania State University, October 1995.

R. Kasturi, O. Camps, Y. Tang, and S. Devadiga. An Airborne Vision System for
Tracking Moving Objects. Technical Report CSE-94-052, Department of
Computer Science and Engineering, Pennsylvania State University, August 1994,

R. Kasturi, S. Devadiga, and Y. Tang. A Model-based Approach for Detection of
Runways and Other Objects in Image Sequences Acquired Using an On-board
Camera. Technical Report CSE-94-051, Department of Computer Science and
Engineering, Pennsylvania State University, August 1994.

Y. Tang and R. Kasturi. An Airborne Vision System for Runway Recognition and
Obstacle Detection. Technical Report CSE-94-045, Department of Computer
Science and Engineering, Pennsylvania State University, August 1994.

R. Kasturi, and Y. Tang. Accurate Estimation of Object Location in an Image
Sequence Using Helicopter Flight Data. Robotics and Computer Integrated
Manufacturing, 11(2):65-72, June 1994,

11.

12.

13.

14.

15.

R. Kasturi, and Y. Tang. Accurate Estimation of Object Location in an Image
Sequence Using Helicopter Flight Data. Proceedings of 1994 Goddard
Conference on Space Applications of Artificial Intelligence. NASA conference
Publication 3268:147-157, May 1994.

Y. Tang and R. Kasturi. Accurate Estimation of Object Location using Epipolar
Constraints. Interim Technical Report to NASA Langley Research Center,
Department of Computer Science and Engineering, Pennsylvania State
University, September 1993.

S. Devadiga and R. Kasturi. Real-Time Implementation of PMMW I[mage
Sequence Processing: A Feasibility Study. Interim Technical Report to NASA
Langley Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, September 1993.

S. Devadiga, Y. Tang, and R. Kasturi. Sensor Positional Sensitivity Evaluation.
Interim Technical Report to NASA Langley Research Center, Department of
Computer Science and Engineering, Pennsylvania State University, September
1993.

Y. Tang, S. Devadiga, and R. Kasturi. 4 Knowledge-Based Approach for
Detection of Objects in Low Resolution Passive Millimeter Images. Technical
Report CSE-93-118, Department of Computer Science and Engineering,
Pennsylvania State University, February 1993.

Part I

Data Modeling and Camera Characterization

Abstract

In this part, the procedure we used to model the noise characteristics of a digital
CCD camera is described in detail. The functioning of a CCD is described, along with
the various sources of noise present in the camera system. A systematic procedure is
developed to measure the spatial and temporal noise of the camera, and the results are
shown in detail. Finally, the measurement of spatial frequency response of the camera

system and the validation of various noise models are proposed as future work.

1 Introduction and Motivation

2 CCD Operation and Noise Sources
2.1 Basics of CCD theory of operation

2.1.1 Theory of CCD oper

ation

2.1.2 CCD imaging architectures
2.1.3 Other features of CCD camera chips

2.2 Noise sources in a digital CCD camera

2.2.1 Overview of relevant

noise processes L0000 0 oL 0L

2.2.2 Dark-field response and nonuniformities

2.2.3 Photoresponse nonuniformity

2.2.4 Charge-transfer efficiency oL

2.2.5 Other interpixel noise mechanisms

2.2.6 Reset noise
2.2.7 Readout noise . . .

2.2.8 Quantization noise

3 Estimation of CCD Noise

3.1 Description of Healey-Kondepudy noise estimation procedure

3.2 Development of pattern noise (flat-field) experimental protocol

3.2.1 Fluorescent sources
3.2.2 Incandescent sources

3.2.3 Solar source

3.3 Development of pattern noise experimental analysis

3.4 Results of noise estimation

3.4.1 Estimation and correction of spatial noise

3.4.2 Estimation of temporal noise

4 Future Work

4.1 Description of Modulation Transfer Function estimation

4.2 Noise model validation . .

Bibliography

i

~1 O NN

o o o

10
10
11
11
11
12

13
13
14

16
16
18
21
21
32

34
34

35

Chapter 1
Introduction and Motivation

This part of the report describes the progress of research at Penn State’s Computer Vision
Lab to develop a simple but accurate method for characterizing and removing the noise
introduced by a digital CCD camera. Digital CCD cameras offer superior performance as
compared to their analog counterparts. For example, digital cameras are free of the spatial
inconsistencies between rows and between frames (i.e., jitter) that may be caused by video
clock instabilities. By its nature, a digital imaging system is also highly immune to the
spatial and temporal artifacts that may be introduced by transmission-line noise. As noted
in Section 3 below, however, several noise processes may still be encountered in such a system.
The goal of the modeling and characterization of the camera described here is to enhance
the operation of a system for airborne obstacle detection. As an example, consider a Cessna
aircraft that has a length and wing-span of approximately 9 m (30’) and the fuselage diameter
of approximately 1.2 m (4’) [5]. The detection algorithm must be capable of detecting this
small target at least 25 seconds prior to a possible collision to allow for corrective actions by
the pilot. Assuming that both aircrafts are traveling at 125 m/s (250 knots), their relative
velocity can be as high as 250 m/s (500 knots). In such case, they would be 6.25 km
(3.5 nautical miles) apart 25 seconds before collision. Using a camera with a resolution of
60 pixels per degree, the image of the aircraft is of 5.0 x 0.7 pixels from a side view, but only
0.7 x 0.7 pixels from a front view. It is clear that safety demands that noise effects even at

the sub-pixel level must be accounted for and compensated as much as possible.

Chapter 2
CCD Operation and Noise Sources

This chapter describes the theory of operation of a CCD camera, followed by the description

of various noise sources affecting a CCD camera.

2.1 Basics of CCD theory of operation

In this section, the theory of CCD operation is presented, and terms are defined. Variants of
CCD architecture are compared, and refinements such as blooming suppression are explained

[2]. Discussion will lead to specific features of Kodak ES 1.0 camera.

2.1.1 Theory of CCD operation

The charge-coupled device (CCD) first appeared in a 1970 Bell Labs technical report. Its
usefulness in both analog and digital electronics was recognized at once, and CCDs have
been used, for example, in signal processing applications such as delay lines for both analog
and digital signals. Since about 1980, however, the term CCD has become synonymous
with video imaging for both the mass-produced consumer and the top-performance scientific
markets. Although CMOS imaging devices, offering a one-chip solution to image capture
and processing, are about to enter the consumer market, it seems certain that CCDs will
continue to dominate the high-performance imaging market for some time to come.

To start with, it should be noted that the CCD is an analog device, and not a digital
one. It is true that the operative quantities in the CCD are charges, and that because these
charges occur in quantizable form as electrons, there is a discrete character to the device’s

operation. Any semiconductive device, however, operates by the transfer of charge carriers.

Although at the lowest level all such operation is discretizable, it is only when we associate
an information content to a transition between discrete levels of much greater magnitude
— a transition that is largely unaffected by the noise processes inherent in all such physical
systems — that we call such a device ‘digital.’

In its simplest form, a CCD comprises an array of charge storage sites, wherein each
storage site is an MOS capacitor as shown in Figure 2.1 (a). An MOS (for metal-oxide-
semiconductor) capacitor comprises an insulating layer of silicon oxide sandwiched between
a metallic (e.g. aluminum) gate and a silicon substrate, which has been doped into semi-
conductivity with an excess of p-type carriers (holes). Typically, the gate is made of degen-
eratively doped polycrystalline silicon (or polysilicon) instead of a metal. Output leads are
bonded via ohmic contacts to the gate and the substrate.

When a potential is applied between the gate and substrate, a region develops in the
substrate underlying the gate that is swept free of p-type carriers by electrostatic repulsion
(Figure 2.1 (b)). Any electrons that may appear in this region (e.g., via injection or gener-
ation) will be attracted to the gate and thus will congregate below the oxide layer. Because
the p-type carriers have been repelled from this region, the electrons are protected against
recombination, and the quantity of charge which they represent in the aggregate - called a
charge packet — will be preserved indefinitely. This region is called the depletion region, and
the electrostatic barrier that defines it is called a potential well.

Each storage site can hold only a finite number of electrons before it begins to overflow.
This number is called the ‘full-well” capacity and generally (for CCD imagers) ranges from
about 20,000 to about 100,000.

Once the charge packet has been formed, it remains to pass the packet along the array
from one storage site to the next without altering its contents. The information represented
by the value of the charge packet cannot be known until that value can be outputted from
the chip. The basic and most common mechanism for the transfer of charge packets is the
three-phase clocked approach shown in Figure 2.2. The first phase is the application of a
potential to the A sites, creating potential wells. The second phase is to apply a potential to
the B sites as well, thereby spreading the charge packet between the A and B sites. The third
phase is to remove the potential from the A sites, which completes the process of moving
the charge packets from the A sites to the B sites. In the next three phases, the packets are
moved from the B sites to the C sites, and so on. From this description, one may understand
why early CCD delay lines were referred to as ‘bucket brigade devices.’

Although one of every three sites is not used during each cycle, one may see that this

in

. .

metal electrode (gate)

silicon oxide layer (insulator
depletion
p-type silicon (substrate) region
a) b)

Figure 2.1: (a) A Metal Oxide Semiconductor (MOS) capacitor. (b) Depletion region in the

MOS capacitor, when a potential is applied between the gate and the substrate.

V3
V2
Gates A
~ ;
|~— Pixel —=f«—— Pixel —+]
/ Stored Charge
H__ 3
Tl m E
=
! a.
. - - F
&
2
T3 MJ E

N B e
15— — —
6 m = m

Figure 2.2: Charge transfer in a three-phase device. This represents one column. Rows go

into the paper. Six steps are required to move the charge one pixel [2].

empty site provides the necessary function of separating each charge packet from the next
one. Likewise, one may see that when a three-phase clocking method is used, the available
site size (and therefore the maximum site capacity) is reduced to one-third. For video
applications, for example, each pixel must be broken into three areas, only one of which may
be optically active, so sensitivity is necessarily reduced.

Because of the capacity and sensitivity constraints of the three-phase system. other ap-
proaches have also been developed. By changing only the clocking method, for example,
a four-phase approach may be used which allows an adjacent two of every four sites to be
active at a time, thereby increasing pixel capacity to one-half. One may obtain two-phase
operation by modulating the thickness of the oxide layer, and chip designs that permit one-
phase clocking also exist. It is believed that our Kodak MEGAPLUS ES 1.0 camera uses a
three-phase clock, but the engineers we spoke to could not definitively confirm this feature.

In a two-dimensional array, the packets in each column are transferred as described above,
each column acting independently but in synchronization with all of the others. Each column
empties into a shift-register row which operates in the same fashion as the columns but on
a different timing scheme. That is, every time the column charge packets travel one site
down the array, the column transfer operation must pause while the entire shift register is
transferred sequentially through the terminal site. This terminal site, the last site on the
array, is a diode which converts each incoming charge packet into a potential (i.e., a voltage).
The stream of varying potentials may be amplified before being outputted from the chip as

a raster image signal for further processing (including digitization).

2.1.2 CCD imaging architectures

In an imaging CCD, the charge packets are created by the photoexcitation of bound electrons
into a free state by incident photons, and the subsequent migration of these free electrons
into the depletion region. (As an aside, we note that the depletion region is usually so
shallow that few free electrons are actually generated within it.) So long as light is incident
on the array, this process will continue. One may easily realize that the continuation of this
process after image capture and during the transfer of the charge packets would cause image
degradation.

One solution to this problem is the use of a mechanical shutter synchronized to the
capture/transfer timing. A better solution, called ‘electronic shuttering,’ uses different areas

of the chip for capture and transfer. The transfer gates are covered with an opaque mask

Image

Array

Shielded
Storage Array

’ Sense Node
Readout H and Amplifier

Figure 2.3: Basic architecture for a full frame CCD [2].

so that the packets being transferred will not be corrupted. As a consequence, the array
may be illuminated constantly without affecting the transfer process, thus increasing camera
sensitivity. On the other hand, it should be noted that division of the chip into two areas
necessarily decreases the area used for image capture, thereby decreasing camera sensitivity.
At least two main divisional configurations exist. In a frame transfer configuration, the
active and shielded areas of the chip are completely separated, as shown in Figure 2.3. At
the end of the capture period, the packets from all of the active sites are simultaneously
dumped into corresponding sites in the shielded array, and the transfer process begins. Note
that a new capture period may begin at the same time the transfer process begins. Because
of the physical concentration of the active sites and the high area sensitivity that results,
high-performance cameras for scientific applications usually contain frame transfer CCDs.
In the interline transfer configuration, lines of storage sites for image transfer are fab-
ricated next to each line of active sites, as shown in Figure 2.4. Photodiodes rather than
MOS capacitors are most often used for the active sites in such arrays (as is the case in our
Kodak camera). The main disadvantage of this configuration is that as little as 20 % of the
chip area may be available for image generation, resulting in a severe loss of sensitivity. For
this reason, a microlens array is usually positioned adjacent to the chip surface to increase
the ‘fill factor.” The microlens array contains one lens for each pixel, which focuses the light

incident on the entire pixel onto the area of the active site.

Photo Diodes Shielded Vertical Transfer Registers
A
A
A
Transter Gate \

AAAAAAAAA

" mEm

Serial Readout

—

Sense Node
and Amplifier

Figure 2.4: Interline transfer architecture. The charge is rapidly transferred to interline

transfer registers via the transfer gate. The registers may have three or four gates [2].

2.1.3 Other features of CCD camera chips

If the depletion region of an active site is filled beyond capacity, the excess charge will
spill over and contaminate adjacent sites in a process called ‘blooming.” Spill-over between
adjacent columns is prevented during fabrication, but a particularly strong local illumination
may saturate most of the length of the affected columns. Blooming suppression combats this
effect with anti-blooming drains that suddenly flatten the response of the active site above
a certain intensity.

In some cameras, such as our Kodak camera, the bias point of the anti-blooming drains
is variable. While reducing the bias point necessarily reduces the array sensitivity, in some
applications such a tradeoff may be acceptable. In cameras used to monitor automobile
traffic, for example, increased resistance to blooming caused by headlights may be worth
some loss of sensitivity.

Our Kodak camera also has a dual-channel transfer configuration. In this structure, the
even and odd rows of the array are processed and outputted through two separate channels.
This configuration allows faster data throughput: our camera can supply 30 frames of 1000 x
1000 pixels per second, while a single-channel version of the same camera can only supply
15 frames per second. With respect to noise analysis, however, it is important to recognize
the fact that pixels in adjacent rows may not be subject to the same noise processes at any

given time. This disparity is especially important when considering frequency-dependent

~1

processes, such as the Modulation Transfer Function (MTF) as discussed in Section 8 below.

2.2 Noise sources in a digital CCD camera

In this section, various types of noise sources in a CCD camera are discussed [2]. Dark and
photoresponse noises are distinguished. CCD-generated noise (e.g. fixed pattern noise) and
noise generated by support electronics (e.g. readout noise) are distinguished. Other noises
such as interpixel effects (e.g. blooming and smear) and optical effects such as point-spread

functions are also discussed.

2.2.1 Overview of relevant noise processes

Although in-camera digitization offers good protection against transmission-line noise, the
signal outputted by the camera is only a flawed representation of the image which is incident
on the CCD array. For one thing, the photosites are like snowflakes in that none is exactly
like any one of the others, and each site will respond somewhat differently to the same level
of luminous excitation.

Likewise, in any such device that is operating above absolute zero, electrons are generated
thermally as well as optically. Once generated, each electron is indistinguishable from any
other, so some portion of the charge packet is necessarily always invalid. Moreover, each site
responds differently to this noise process as well.

Finally, the on-chip paths by which the charge packets are read out from the chip and
converted into potential values, and the off-chip circuitry through which these signals are
amplified and digitized, introduce errors of their own that may vary with signal amplitude
and frequency. An illustration of the imaging system path and some of the noise processes

associated with each step is presented in Figure 2.5.

2.2.2 Dark-field response and nonuniformities

As mentioned above, the electrons that migrate into the depletion region may be generated
by thermal as well as photoelectric processes. Therefore, some signal will be outputted even
when the array is in total darkness. The result of this phenomenon is called the camera’s
dark-field response.

Dark-field response will vary from pixel to pixel. This noise process is also extremely

temperature-dependent: for example, the noise level doubles when the array temperature

Atmosphere Lens Camera
CcCD Support Electronics
Point-spread | PSF | 1) Localized effects: Readout
function (PSF) | cos? Dark noise, Reset noise

(a linear effect Photoresponse (kTC) | (e.g. from | Quantization

function of nonuniformities noise | amplifiers noise
signal 2) Interpixel effects:
frequency Blooming,
Charge transfer
efficiency

Figure 2.5: An illustration of the imaging system path and some of the noise processes

associated with each step

increases by 8 to 9 degrees Celcius. For this reason, measurements should be taken only after
the camera has warmed up. (In order to obtain an accurate measurement of the dark field.
we believe that it is also important to allow the array to warm up under normal operating
illumination conditions. A focused image of any intensity will certainly affect the surface
temperature of the array, and thereby influence the dark component of the total response.)

The magnitude of the dark-field response is also, of course, linearly dependent on the
exposure time, i.e., the period of time during which electrons are being collected. Although
thermal electrons may also potentially corrupt the charge packets during the transfer process.
transfer across the chip occurs so rapidly that this quantity is usually ignored.

Fortunately, the thermal noise process is simply additive. So long as we can reliably
estimate the number of such electrons collected at a particular site, it is a trivial matter to
subtract that measure from the gross response.

CCD chips are usually (if not universally) fabricated so that some of the active sites on
the periphery are shielded from illumination. (An area of isolation pixels also separates these
dark pixels from the active ones in order to prevent light leakage.) During image processing,
the values returned by the dark pixels may be used to calculate an estimate of the magnitude
of the array’s dark response, which may then be subtracted from the outputted image. As
the response of each active site is unique, however, the accuracy of this approach to dark-field

compensation is not optimal.

Our Kodak camera includes a feature called ‘dark-clamping’ whereby such an estimate
of the dark field is automatically subtracted from the image. While not exactly accurate
and therefore not entirely appropriate for our present purposes, this feature is considered a
significant advantage for consumer applications. In ‘dark-clamping,’ the dark-field estimate
is automatically calculated and subtracted, so that the camera’s output has already been
compensated. As the process is transparent and occurs directly at the chip output, it is not
necessary to keep track of exposure time or temperature. It may be possible to disable this
function in our camera via a software command, but the particular Kodak engineers with

such knowledge have so far been unresponsive to our requests.

2.2.3 Photoresponse nonuniformity

Just as the active sites vary in their response to thermal excitation, they also vary in their
photoresponse. In other words, each pixel will react differently to the same level of incident
illumination. The degree by which the number of photoelectrons collected by a particular
site varies from an arbitrary standard amount may be thought of as a local ‘gain factor,” as
this noise process is multiplicative with respect to the level of excitation and the response of
each site is generally quite linear.

The dark-field and photoresponse nonuniformities together comprise the array’s ‘fixed-
pattern noise.” Generally, fixed-pattern noise is defined only at each pixel and has no spatially
varying component. In other words, there will be no correlation between the fixed-pattern
noise at two adjacent pixels. However, we note that there will usually (if not always) be a low-
frequency component to the photoresponse nonuniformity, caused by unavoidable variations
in the substrate thickness. These variations cause photons of the same wavelength to interact
differently at the quantum level at different points on the array. This effect is not a separate

factor, though, and is incorporated into the general photoresponse nonuniformity.

2.2.4 Charge-transfer efficiency

Although each transfer gate successfully moves well over 99.99 % of each charge packet to the
next gate in the column, some small amount of charge stays behind. When the incident image
contains sharp (i.e., high-frequency) transitions between areas varying greatly in amplitude,
this process will tend to filter out the high spatial frequencies by blurring the transitions.
This effect increases with array size, i.e., with the number of transfers required to move each

packet off of the array. Charge-transfer efficiency is a component of the array’s frequency

10

response and therefore is included in the array’s modulation transfer function (Section 8).

2.2.5 Other interpixel noise mechanisms

As discussed in Section 2 above, blooming occurs when the charge in a saturated pixel
overflows into adjacent pixels in the column. By the anti-blooming measures described above,
the post-saturation response can be largely reduced, but it cannot be eliminated. The extent
to which a charge packet has been corrupted by overflow is of course indeterminable. and in
processing the resulting images this effect must be kept in mind. Whenever a saturated pixel
is encountered, the signal outputted from its column neighbors must be considered suspect
and possibly corrupted.

Another source of interpixel noise, called ‘smear’ (or sometimes tunneling), occurs when
photoelectrons generated at one site migrate instead into a neighboring site. (This process
is quite different from the process, also called ‘smear,” which occurs when transfer occurs in
a non-shielded array while the array is still being illuminated.) As this process is related
to signal frequency, we would expect it to be included in the array’s modulation transfer

function (Section 8).

2.2.6 Reset noise

Reset noise arises when the capacitor which converts the charge packets into potential values
is not completely reset between packets. As this noise is highly temperature-dependent, it is
also referred to as kTC noise, where k is the Boltzmann constant, T is the temperature and
C is the capacitance of the device. In most if not all CCDs manufactured today, this noise
process has been virtually eliminated through the use of correlated double sampling (CDS),

whereby two samples are taken from each packet and averaged to remove the reset error.

2.2.7 Readout noise

As the signal generated by the CCD array is exceedingly small, it must be amplified before
processing. Each of the amplification and processing stages necessarily introduces its own
noise process, which will generally be dependent on temperature and signal frequency. On

the whole, though, this noise is random in time and cannot be compensated.

11

2.2.8 Quantization noise

Conversion of the analog array signal into a digital quantity necessarily results in a certain
loss of information. While this noise is completely random and unknowable, it is easily

characterized as a zero-mean process whose variance is a function of the number of bits in

the digital output.

12

Chapter 3

Estimation of CCD Noise

This chapter describes the methods for estimating the parameters of the temporal as well as
the fixed pattern noise of a CCD camera. Healy-Kondepudy noise estimation procedure is
used to estimate the temporal noise. An experimental protocol is developed for estimation
of fixed pattern noise, and the detailed mathematical analysis for least squares estimation
of the noise is presented. Results of noise estimation using the Kodak ES 1.0 camera are
described.

3.1 Description of Healey-Kondepudy noise estimation

procedure

Following a common model of CCD behavior, Healey and Kondepudy [1] express the digital

output D at each pixel as
D = (KI+ Epc+ Ns+ Ng)A+ Ny,
where
e K is a factor that characterizes the pixel’s photoresponse,
e [is the incident illumination,

e Epc is the expected number of dark electrons,

N is the shot noise,

Ng is the readout noise,

13

e A is the analog gain, and
e Ny is the quantization error.

To reduce this expression, Healey and Kondepudy make the following three assumptions:
1. The photoresponse factor A" is very close to 1 for all pixels,
2. The expected number of dark electrons Ep is nearly constant across the array, and
3. The incident illumination 7 is nearly constant across the array.

Using these assumptions, and representing the image-wide means of I and Epc as I and

Epe, the expression for D is reduced to the form
D = /[-+ ;‘?V,
where
H = A(I——F ED(*)

and N is a zero-mean random variable characterized by
2 2T, F 2
On = A (I -+ E[)C) + o
Here the noise term o7 is assumed independent of the number of collected electrons:

2 20 @
oL = Ach + —.
¢ 12
These relations imply

2 2
oy = Au+ oz,

so by taking the differences between pairs of similar images (i.e. y; =)., Healey and

Kondepudy estimate the parameters A and o2.

3.2 Development of pattern noise (flat-field) experi-

mental protocol

In this section, a history of what we have observed is presented, including the drawbacks
of our previous setups, and concluding with a detailed description of the final test bench.
Possible sources of error are noted, for example, the failure to consider spectral content, and

the use of neutral density filters in the optical path.

14

3.2.1 Fluorescent sources

As a first step, we resolved to determine the flat-field response of our camera: i.e., the level
of interpixel variation when each site in the entire array was presented with the same level of
excitation. Because we had a relatively large computing capacity available, it seemed that
we could capture and process large numbers of images fairly quickly, averaging the responses
over time in order to eliminate temporal variations, and thereby develop a flat-field model
that could easily be verified. Obtaining a field illumination that was uniform in both time
and space, however, turned out to be problematic, as those with more optical engineering
experience might already know.

First, we concentrated on using reflected excitation. We reasoned that if transmitted
light were used, it would be impossible to completely remove the image of the light source
from our field, even through diffusing sheets and a defocused lens. Therefore, reflection from
a Lambertian surface appeared more promising in this regard.

Although indoor fluorescent lighting is prevalent and apparently very uniform, it im-
mediately became obvious that a fluorescent lighting source would not be suitable. The
accuracy of our results, and specifically their immunity to temporal variations, would de-
pend on our ability to collect a large number of images under identical excitation conditions.
Conventional fluorescent lights, of course, flicker at approximately a 60 Hz rate, rendering the
level of illumination across any sequence of shuttered images very non-uniform and therefore
unusable for our purposes.

High-frequency fluorescent sources are available, being priced at about $1.000 for a 10-
inch square diffuse source operating at 15 kHz or higher. Even through a diffusing layer,
however, such sources are not uniform enough to present a transmitted flat-field, and would
have to be used as target illuminators. We soon discovered that the problem of evenly
illuminating a diffusing target was not trivial, so this approach was not an optimal solution
either. (For a target, we used an opaque sheet of coated matte paper that was supplied as
a protective spacer for laser-printer color transparency blanks.)

We did obtain good uniformity using the blank screen of a laptop computer as a transmit-
ted flat-field. The internal configuration of such a device is unknown to us, but the operating
frequency seemed to be high enough to provide temporal uniformity. It was impossible to
vary the brightness of this field while maintaining the spatial uniformity, though. Although
when white the pixels were uniform, their brightness varied from row to row when thev were
darkened. Also, the overall intensity of the source was insufficient to permit the use of neu-

tral density filters to obtain different brightness levels. Although such a source is convenient

15

and generally available, the difficulty of evenly varying its brightness makes it unsuitable for

the purposes of our model.

3.2.2 Incandescent sources

We found that an AC-powered incandescent source was also not entirely free from temporal
flicker. While DC-powered incandescent sources are available, we also found it impossible
to obtain spatially uniform illumination from such a source. We tried bulbs mounted in
reflectors and an overhead projector, each shone through a diffusing sheet, but were unable
to completely remove the filament image from the illumination.

Consultation with a Kodak research scientist gave us some insights into general optical
laboratory practices. We learned that DC-powered incandescent sources may be suitable for
flat-field production, but only if a precision unit costing several thousand dollars is used.
Also, such experiments should be conducted in a temperature-controlled room, and after the
light source has been stabilized for at least 24 hours. The light from such a source cannot
be used to illuminate a flat surface, but rather must be ported into an integrating sphere,
which is a hollow sphere with very small ports and a Lambertian inner coating. Besides
being very expensive as well, such a sphere is of little use after the CCD sensor is mounted

into the camera body.

3.2.3 Solar source

While we were investigating the suitability of other sources, we also tried to obtain a flat-field
from a diffuse surface posed near a window. Note that if properly monitored, the short-term
temporal uniformity of the sun as a source can be excellent, as sunlight does not flicker.
However, we found it generally impossible to reliably duplicate a uniform illumination of a
flat diffuse surface. Every time we posed the target (on an artist’s easel, mounted to a flat.
uniform, and non-reflective surface), the pattern of light distribution varied.

As a location providing no less than 50 degrees of completely unobstructed open sky
was available, we began to consider using transmitted sunlight as a flat field. Although the
resulting setup could not be as completely specified as if a particular model of xenon lamp,
for example, was used, the experiment could still be duplicated anywhere that an expanse of
open sky was available. Also, we realized that the spectral content of the illumination could
vary without our knowledge and affect the camera’s response. The freedom from flicker and

the apparent uniformity of a patch of blue sky far from the sun led us to investigate this

16

/ window

acetate

4

camera——

Figure 3.1: The test setup used for capturing flat field images using the solar source.

possibility.

We began by thoroughly cleaning the window inside and out. Then, a double laver of
matte acetate was mounted as a diffusing target to increase uniformity and also to reduce
the illumination level somewhat. The camera lens was positioned about six inches away from
the acetate, pointed at the center of the open expanse, and focused to infinity. This test
setup is illustrated in Figure 3.1.

We used a Nikon 58mm f/2.8 Micro-Nikkor lens for most of our experiments, as the
performance of this lens was rated at the top in several surveys we found on the Web. The
F-mount allowed us to always mount the lens in exactly the same rotational orientation,
although we later found the lens to have excellent symmetry of response with respect to
the optical axis. In order to obtain varying levels of sensor illumination, we varied the lens
aperture (minimum aperture: f/32) and also used high-quality neutral density filters.

We conducted our experiments under clear skies in April 1998 between 10:00 AM and 4:00
PM. We found that after 4:00 PM, the level of illumination began to decrease perceptibly
from minute to minute. Images were collected in sets of 100 at no less than 25 fps, so each
set was collected in less than 4 seconds. Each run of sets, characterized as a number of sets
taken at several different apertures, was collected as quickly as possible (generally within 10

minutes) to provide a tentative basis for comparing the lens response at different apertures.

17

Uniformity of illumination level within each set of 100 images was verified by taking the
average pixel value for each image, identifyving the maximum among the 100 averages, and
characterizing the other averages as percentages of the maximum. A set, and consequently
the entire run, was rejected if a deviation of more than 1 % was discovered for average image
values of 100 gray levels or more, on a scale of 0 to 255. For average values of under 100 gray
levels, deviation of from 3 to 5 % were sometimes accepted. as we recognized that camera
noise processes contributed a greater portion of the error in such images.

Once the uniformity of each set within a run had been verified, each set was condensed
into two 1000 x 1000 32-bit floating-point arrays. The first array was the pixel-by-pixel mean
of the 100 images of the set, and the second array was the pixel-by-pixel variance. These

two arrays became the input parameters for the model described in Section 6 helow.

3.3 Development of pattern noise experimental analy-
sis

In this section, a detailed mathematical analysis of the linear system model is presented.

Assumptions are identified and discussed.

We begin by assuming that the behavior of each pixel at any particular moment in time

can be described by an equation of the form
y=mr+c+n=FEy+n (3.1)
where
e y is the digital output signal,
e 1 is the incident illumination (with xy defined as zero),
e cis the constant portion of the dark field noise, or additive fixed pattern noise (FPN),

m is the constant portion of the interpixel photoresponse nonuniformity or multiplica-
tive FPN,

e 7 is a noise term that includes all other system noises such as shot noise, readout noise,

system nonlinearities, and quantization error,

Ely] is the expected value of y.

18

The temporal noise 77 can be modelled as a zero mean Gaussian variable with a variance
Viinl = Viy] = wo + w E[y) (3.2)

The term wqy corresponds to the constant portion of the noise variance, caused mainly by
the readout noise, whereas the w; term corresponds to the shot noise, which is Poisson
distributed with a variance proportional to the output mean. The resultant noise due to
these terms can be approximated with a Gaussian distribution.

If the FPN parameters m and ¢ can be determined in advance, the FPN can be compen-
sated prior to further processing. This is likely to improve the performance of the detection
algorithm. Also, the temporal noise parameters wy and w; would help us determine the
performance of the algorithm.

Let xg,x(,zs...7, denote a number of intensity values at which observations are made,

with ¢ = 0 denoting the zero intensity. For each intensity, we can write:
Yy =mri+c+n (3.3)
Let the mean and variance of a y; be denoted by E; = E[y;] and V; = V[y;] = 6. Then,
Vi=wy+w E; (3.4)

An estimate of the mean and variance can be obtained by using the sample mean and variance
of a number of images obtained under identical conditions. A set of such equations obtained
by substituting these in (3.4) can be solved in least squares sense to give the values of wy
and w,.

For determining values of m and ¢ for each pixel, the following method is used. Denoting

the average over NV observations with an overbar, we have
g = mx; + ¢+ 17 (3.5)

Since 7; is assumed to be normally distributed as N(0,6?), %; is normally distributed with
parameters

Elg;] = Ely;) = ma; + ¢

e R

Consider a neighborhood centered at the current pixel. Assume that the neighborhood is
small enough so that the incident illumination x; remains approximately constant across it,

but large enough so that the constituent pixels’ nonuniformities will average out to provide

19

us with a good measure of the local incident illumination. Denoting the average value over

this neighborhood by the operator u,, we have
15[90] = pisle] + g5l

sl = pes[mles + ps[e] + pusl]
giving
— /ts[.lj/i] - /Is[gﬂ] - /1‘.9[7713] + N‘s[ﬁﬂ]
fts[m)

The noise terms 7;, are assumed to be independent and distributed as N(0,0?). We also

€T

assume that these terms are uncorrelated in space, i.e. that the values 7; for any pixel are

independent of the values for the pixel’s neighbors. Then

o?
i~ N0, <2
. [7]] (N A\S>

where N, is the number of pixels in the averaging neighborhood. Because N, will be on the

order of 50-100, the terms u,(7;] and p[fj] will be distributed very close to zero, and we
may discard them in the derivation.

Note that only the relations between the various illumination levels x; are important, and
not their absolute values. We may therefore choose any convenient scale for our estimating

x;. Setting ps[m] equal to 1, we obtain an estimate of z; given by:
;= /ls{g‘i] - ,U‘s[.%] (36)
From 3.5 and 3.6 we get
.Zji - YAI = (m - 1).‘;71' + ¢+ T_h
We define the following variables:
20 = ¢ ~ fis[To),
n=m—1.

After substitutions, we obtain the expression

I

Ui — is[Ui]) = 2135 + 20 + 7

We may now express the behavior of any particular pixel across various levels of incident

illumination with the linear system

where

y= [(270 - /‘s[ﬂﬂ})ﬂ (ljl - /113[17]]), T (?77, - N’S[gn])]T’

Ao (0 g : "
A= =la a e a s
1 1 1 0 1 n !

We may also assume that the noise terms 7; are uncorrelated in time, so that the error
(= (y — Az) is distributed as N(0, R), where

1 5
R= Vdiag(aé, o, --.02).

Therefore, we can apply least-squares methods to estimate z, as well as its covariance P.

3.4 Results of noise estimation

In this section, we describe the results of estimating the spatial and the temporal noises.
The spatial noise can be reduced by using the estimates of its parameters for every pixel,
to compensate it. However, the temporal noise varies from frame to frame, and therefore

cannot be reduced by such a method.

3.4.1 Estimation and correction of spatial noise

In this section, results showing significant reduction of pattern noise in time-averaged images
are presented. The model’s lens-independence is demonstrated. Failure of the model to
reduce noise in individual images is also noted.

CCDs are universally reported to be extremely linear devices. Indeed, the basic assump-
tion of our camera model above is that each pixel operates in essentially a linear fashion.
In order to test that assumption. we conducted preliminary experiments to determine the
camera’s response at different flat-field illumination levels. Results of these experiments are
shown in Figure 3.2, where each point represents a mean value of the central 1000 x 1000
pixels of the array, and Figure 3.3, where the mean dark value has been subtracted. We
varied the illumination level by changing the lens aperture, and assumed for the purpose of

these experiments that the illumination thereby changed in perfect powers of 2. Therefore,

21

Linearity of sensor response

_— even rows
--- odd rows.
a [e] even rows
x % odd rows
1w’k
i
é
%
« 1
0 1
: s
10' 10!

Mean gray lsvel (range 5-300)

Figure 3.2: Camera’s response at different flat-field illumination levels. Each point represents

a mean value of the central 1000 x 1000 pixels of the array.

Linearsity of sensor response: avg. dark level subtracted
T

———— evenrows
--- odd rows
o O evenrows
x x odd rows.

Relative ilumination level

10° 10' 10
Mean gray level (range 0.5-300)

Figure 3.3: Camera’s response at different flat-field illumination levels, after subtracting the

mean dark value. Each point represents a mean value of the central 1000 x 1000 pixels of

the array.

22

Photon transter curve for exposure 200 (13.1x 1073 sec)
T T

o © evenrows
x x oddrows
L]
L4
10 b B
L]
[
§ L]
S
g- &
2 g
é 0.6‘
&
i x
de
X 0
x 6 o
x
o
° Q
]
) X
10 L)
10' 10°

Mean gray level {range 4-300)

Figure 3.4: The plot of the signal variance against the signal mean.

the largest error in these plots is in the ordinate (illumination level), and not in the abscissa
(camera response).

For convention’s sake, we also present a rudimentary photon transfer curve in Fig-
ures 3.4 and 3.5. This curve, a plot of signal mean against signal variance, is the most
commonly used CCD performance curve. Generally, three areas should be discernible, cor-
responding to the noise process that predominates in each section. To the left, the curve
is theoretically flat, as readout noise predominates at low levels. In the center, the curve
has a slope of 1, as photon shot noise is the predominant noise process here. On the right,
the curve has a slope of 2, corresponding to pixel nonuniformity noise (i.e., fixed pattern
noise). Of these three noise processes, of course, only the last is in any way deterministic
and compensable. The point where the second and third sections meet represents the signal
level at which fixed pattern noise limits the camera’s sensitivity. In these terms, the object of
this research is essentially to move this point to the right. Our final report will include more
refined versions of this curve, updated to incorporate the large amounts of data obtained
since these plots were generated.

Our primary lens was the Nikon 58mm Micro-Nikkor, and its response to a high-level
flat-field illumination at apertures of f/4 and f/16 is shown in Figures 3.6and 3.7. (Unless

noted otherwise, we use examples taken at high levels of illumination throughout this section.

23

Photon tranefer curve for exposure 200 (13.1 x 107 soc): avg. dark value subtracted
T T

o O evenrows
x x odd rows

Mean variance (range 0.1-2)
X
Ox

-~ x 1 1
10 10’ 10
Mean gray level (range 1-300)

Figure 3.5: The plot of the signal variance against the signal mean after subtracting the

mean dark value.

Such images contain the highest noise levels, and also the greatest proportion of compensable
noise.) The reduction in lens response as one moves away from the image center is clearly
evident. More puzzling to us is the fact that the response becomes more non-uniform as
the aperture becomes smaller, as lenses are generally assumed to perform better at smaller
apertures. This effect is illustrated in Figure 3.8 by taking a cross-section of the image (i.e..
the center row) at different apertures. Efforts to consult with a local optical expert in order
to explain this effect are ongoing.

Figure 3.9 shows cross-sectional results at aperture f/4 for several different runs of images
(collected as described in section 5 above, over a period of days or weeks), each at a different
level of incident illumination. In Figure 3.10, these curves are normalized to correspond to
Run #1 at the central pixel. One can see that errors as great as 1 % as evident on the left side
of the image. As we would expect the lens response at any one point to he perfectly linear
with respect to changing illumination levels, we must assume that these errors represent a
flaw in our flat-field illumination. One possible cause is that (with reference to Figure 3.1)
our tests were conducted in a room with white walls, and reflections from the room onto
the acetate and thereby into the camera may have corrupted our results. Note, however,
that the errors are generally much smaller than 1 %, and that the largest normalization

factor is nearly 2. Overall, then, this figure demonstrates that our flat-field setup is quite

24

Spatial response of Nikon lens (%4, exposure 200)

230

N
»
o

I
N
o
L

gray levet

~
v
L

210

205)
1000

1000

400

0 o0
column number row number

Figure 3.6: The response of the Nikon lens to a high-level flat-field illumination at aperture
of /4.

Spatial response of Nikon lens (f:16. exposure 200}

gray level

1000

400

column number 0 0

row number

Figure 3.7: The response of the Nikon lens to a high-level flat-field illumination at aperture
of f/16.

Effect of aperture setting on local illumination level (center row, exposure 200)
220 T T T T T T T T T

200
= . 4 * BN
% ’ }"" Yy I
5 190T L K Y :
5 [ooe” \
?; R ¢ ‘N‘ ,
2 , . .
g 180 ,»"’.'v - R e]
2 ol KN
170+]
_— fid
. - -~ 158 S
160 _ - - - 18 i, .
11
150 L s " L) . .) .
0 100 200 300 400 500 600 700 800 900 1000

column number

Figure 3.8: The cross section of the lens response at the center row, showing plots of the

normalized gray level, for a number of aperture settings.

consistent. We would expect that results could be further improved by posing a black matte
shield around the camera to keep out reflections.

One of the runs was arbitrarily selected, and the procedure described in Section 6 above
was used to develop a camera noise model. Figure 3.11 shows the result of applying that
model to the image of the highest-level set in this run. Essentially, then, we are applying
the noise model to itself here. Therefore, this image represents the limit to the amount of
noise reduction we can expect. Assuming that the image presented by the lens is a smoother
version of the final curve, we can see that a very small level of noise can be expected.

Figure 3.12 shows the result of applying the noise model to the high-level set image of a
different run (i.e., one taken on a different day). It is immediately obvious that our model
gives a significant degree of improvement.

Figure 3.13 shows the model as applied to a low-level set image of a different run. The
level of improvement is much reduced, as the level of compensable (i.e., deterministic) noise
in such an image is negligible.

As our model is specific to the array, and not to any particular lens, we also tested
its application to set images from a different lens. Figures 3.14 and 3.15 show the flat-

field response of a Fujinon zoom lens set to 12.5 mm at apertures of £/5.6 and f/16. It is

26

Incident illumination levels at aperture fi4 (center row, exposure 200)

240 T T T T T T T T T
220 e el
200 /‘\———\W
180 E
T
&
3 1601 R
&
o
140 4
120} 1
_— Run #1
- - - Run #2
100} - - - Run #3 4
Run #4
80 1 L L | L L i 1 L
0 100 200 300 400 500 600 700 800 900 1000

column number

Figure 3.9: Cross sectional results at aperture of f/4 for several different runs of images, each

at a different level of illumination.

Normalized iliumination levels at aperture fi4 {center row, exposure 200)

215 T T . T T . T . T
210
-
3205
>
5
i=
B
N
g
5 200
1=
195{# ——— Run#!
" - - = Run #2
- = - Run #3
Run #4
190 L s . .
0 100 200 300 400 500 600 700 800 900 1000

column number

Figure 3.10: Cross sectional results at aperture of f/4 for several different runs of images,
each at a different level of illumination, normalized with respect to Run #1 at the central

pixel.

27

Application of noise model to constituent image (center row, exposure 200)
218 T T T T T T T

2141 ’ E

212+ . . E

gray level
n n
=] e
@ <
T T

2
&

204

v —_— Image as collected
200 7 s After subtracting additive component
¥ _— Afier division by multiplicative component

" L L L L ; L
0 100 200 300 400 500 600 700 800
column number

198

Figure 3.11: Result of applying the camera noise model to an image from a high-level set.

Application of noise mode! to non—constituent image (center row, exposure 200}
205 T T T T T T T

200+ j : 1

gray level
©
(o]

190
_— image as collected
After subtracting additive component
_— After division by multipficative component
185 1 L s L L 1 '
100 200 300 400 500 600 700 800 900

column number

Figure 3.12: Result of applying the camera noise model to an image from a high-level set of
a different run.

28

Application ol noise model to new image (center row, exposure 200)
29 T T T T T T T T T

_— Image as collected
26+ After subtracting additive component
_— Atter division by multiplicative component

gray level

251 b

L L L L 2 L L
300 320 340 360 380 400 420 440 460 480 500
column number

Figure 3.13: Result of applying the camera noise model to an image from a low-level set of

a different run.

immediately apparent that the response of this lens is not so precise as that of the Nikon
lens, perhaps due to the mechanical compromises necessary for the zoom operation.

Figure 3.16 shows the result of applying our model to a high-level set from this lens.
Comparison to Figure 3.12 shows that many noise spikes occur in the same location, as
would be expected. However, the general shape of the curve shows the same dip to the right,
suggesting again that our flat-field is slightly flawed. Improvement does not quite reach the
level of that in Figure 3.12, but is excellent nonetheless.

Finally, we note that in all of the results above, the noise model was applied not to
individually captured images, but rather to the mean image taken from 100 individual images.
Therefore, temporal (nondeterministic) noise was significantly reduced. In Figure 3.17, we
applied the noise model to an individual image. One can see that our model had little
effect beyvond smoothing the quantized levels. The results above clearly demonstrate that
for a set of time-averaged images. our model can offer a significant reduction in camera-
generated noise. Unfortunately, for individually captured images, temporal noise processes

predominate which cannot be removed.

29

Spatial response of Fujinon lens (12.5 mm, /5.6, exposure 200)

160 <

155

150

gray level

1000

400

¢ 0
column number row number

Figure 3.14: Flat-field response of a Fujinon zoom lens set to 12.5 mm at f/5.6 aperture.

Spatial response of Fujinon lens {12.5 mm, 18, exposure 200}

gray level

1000

400

U]
I r
column numbe row number

Figure 3.15: Flat-field response of a Fujinon zoom lens set to 12.5 mm at f/16 aperture.

30

Application of noise model to image from different lens
220 T T T T T T

218

214

n
n

gray level
n
o

Image as collected
After subtraction of additive component
After division by multiplicative component

200 s i i L L L L
100 200 300 400 500 600 700 800 900

calumn number

Figure 3.16: Result of applving our model to a high-level set from the Fujinon lens.

Application of noise mode! to singte image (center row, exposure 200)
210 T T T T T T T

gray level

Image as collected
After subtracting additive component
_ After division by multiplicative component

L L 1

185 - L
100 200 300 400 500 600 700 800 900
column number

Figure 3.17: Result of applying our model on an individual image, instead of the mean of

images. The model has little effect beyond smoothing the quantized levels.

31

3.4.2 Estimation of temporal noise

To estimate the temporal noise in the camera images, we collected runs of sets of images.
Each set contained 100 images (i.e. N = 100), collected at a rate greater than 28 fps (i.e. over
a period of less than 4 seconds). In order to verify that the illumination level was constant
across this period, we took the image-wide mean of the central 1000 x 1000 pixel region of
each image, and found the difference between the means of the brightest and darkest images
in the set (relative to the mean of the darkest image). For brightly-lit images (i.e. mean
gray level from 150 to 255), the maximum such difference we accepted was 1.02%; most
differences were less than 0.5%. At lower levels of illumination, the increasing proportion of
temporal noise caused this difference to rise, but even at the lowest illumination levels we
accepted no runs with differences greater than 5%. Each run comprised three to eight sets
of images, taken at progressively narrower aperture settings. We collected a run within as
short a time as possible, to permit us to assume if necessary that the available illumination

had remained constant (such an assumption is not necessary for the model described here).

Each accepted set of images was later condensed into two floating-point arrays of size
1024 x 1024, representing the sample mean and sample variance values at each pixel.
For estimating the temporal noise parameters, imagewide means of these arrays are used

as estimates of E; and V; in the equation:
Vi=wo+w E; (3.7)

The equation is solved using least squares to obtain the paramters wg and w;. The plot of
V; to E; is shown in Fig. 3.18. Its slope is w; and the y-intercept is wg. The values of these
parameters obtained are:

wp = 0.171, w0, = 5.6 x 107° (3.8)

This corresponds to a noise variance of o2 = (0.888 or standard deviation of o = 0.942 for
the background value of 128. This value is used in experiments for testing target detection

algorithms.

32

08r-

0.6

04+

02 L L 1 L s
0 50 100 150 200 250

Figure 3.18: The plot of the sample variance 1} against the sample mean E; for different
values of F;. It is seen that the plot is approximately a straight line, from which the

parameters of the temporal noise can be obtained

33

Chapter 4

Future Work

The following avenues of future work can be explored. The spatial frequency response of the
optical system consisting of the lens and the camera, can be characterized using the concept
of Modulation Transfer Function (MTF) as described below. Also, the camera noise models

can be validated using a statistical hypothesis test.

4.1 Description of Modulation Transfer Function esti-

mation

The spatial frequency response of an optical system is commonly characterized with a plot of
the system’s modulation transfer function (or MTF), which shows the normalized magnitude
of the system’s response to a range of input frequencies. The MTF may be expressed as
the Fourier transform of the system’s line spread function (LSF), which is the response to a
flat-field containing a single sharp line. In other words, the LSF is a two-dimensional analog
to an impulse response. (For the purposes of this overview, we will ignore the fact that a
CCD array responds differently in the row and the column dimensions.)

Traditionally, the LSF of a CCD is obtained by projecting a very narrow band of light
onto the array. In an SPIE paper, Lin and Chan describe a method of computing the MTF
from the edge-spread function, which may be differentiated to obtain the LSF [4]. The
edge-spread function is obtained from a high-contrast target, making the measurement more

flexible, more accurate, and less expensive than the traditional method of LSF measurement.

34

4.2 Noise model validation

An important issue to be addressed as part of this research is the validity of the noise
models used to generate syvnthetic images. In other words, one must answer the question of
whether the computer generated images are indeed a set of representative images suitable
for the performance characterization of the detection algorithms. This can be done by using

a statistical hypothesis test described in [3].

35

Bibliography

(1] G. E. Healey and R. Kondepudy. Radiometric CCD camera calibration and noise estima-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(3):267-276,
March 1994.

[2] G. C. Holst. CCD Arrays, Cameras and Displays. JCD Publishing, Winter Park, FL,
1996.

[3] T. Kanungo, R. M. Haralick, H. S. Baird, W. Stutzle, and D. Madigan. Document
degradation models: Parameter estimation and model validation. In TAPR Workshop on

Machine Vision and Applications, pages 552-557, Kawasaki, Japan, 1994,

[4] S.-Y. Lin and W. H. Chan. MTF and CTF measuring system for digital still cameras.
In Proceedings of the SPIE, volume 3019, pages 50-57.

[5] D. Wood. Jane’s World Aircraft Recognition Handbook. Jane’s Information Group Ltd.,
Coulsdon, UK, 1992.

36

Part 11
Algorithms for Detecting Airborne Obstacles

Abstract

This part describes the approaches used for detecting airborne obstacles using
image sequences obtained from a camera mounted on an aircraft. A number of basic
algorithms were implemented for airborne obstacle detection. The performance of these
algorithms was characterized in presence of camera noise using theoretical and
experimental methods. Since the performance degrades in the presence of background
clutter, a special approach to address the problem of hazard detection in presence of
clutter was studied. This approach uses the differences in the behavior of translation and
expansion of image features corresponding to the objects on a collision course and the
background clutter. Algorithm fusion for combining different algorithms to overcome
their individual limitations was also studied. In addition to this work on detecting objects
on collision course, algorithms for detecting objects crossing the aircraft were designed
and implemented on a real-time system. The image processing and tracking steps of the
system are described in this part, whereas the hardware implementation is described in

the next part.

1 Introduction

2 Object Detection Algorithms

2.1 Background
2.2 Statistical decision theory for target detection
2.3 Pre-processing
23.1 Low-stopfilter.
2.3.2 Morphological filter
2.4 Spatial integration
2.5 Temporal integration
2.5.1 Recursive temporal averaging
2.5.2 Dynamic programuning
2.6 Composite system
2.7 Results using analog camera L.
2.8 Data collection using digital camera

3 Performance Characterization of Detection Algorithms

3.1 Performance characterization methodology
3.2 Experimental protocol
3.2.1 Image generation
3.2.2 Algorithm application,
3.2.3 Estimation of false alarms (FA) and mis-detections (MD)
3.24 Performance characterization 0.
3.3 Results L
3.3.1 Synthetic noise from camera model
3.3.2 Real noise from a digital camera
3.3.3 Real background an from analog camera
3.3.4 Comparison with other methods

4 Theoretical Performance of Detection Algorithms

4.1 Dynamic programming algorithm
4.2 False alarm and mis-detection probabilities
4.3 Normal approximations

ii

SO e W W

-1

-1

44

4.4 VFalsealarm analysis. 46

4.5 Missed detection analysis 48
4.6 Calculation of required SNR 48
4.7 Temporal averaging and single frame thresholding as special cases 49
4.8 Theoretical performance plots L. 50
4.9 Comparison between theoretical and observed performance 52
4.10 Effect of approximations 53

5 A Special Approach for Hazard Detection 56
5.1 Sceme geometry o7
5.2 Detection using translation L. o7
5.3 Detection using expansion 62
54 Effect of horizon., 64
5.5 DBehavior of translation and expansion 65
5.6 [Estimation of translation and expansion 65
5.7 Resultso, 68

6 Algorithm Fusion 74
6.1 Combination of algorithms using a statistical approach 74
6.2 Statistical behavior of low-stop and morphological filters 75
6.3 Bayesian fusion of multiple filters 80
6.3.1 Constant False Alarm Rate (CFAR) detector 81

6.3.2 Direct thresholding of Log Likelihood Ratio (LLR) 83

6.4 Application on images, 84
6.5 Results. 84

7 Detection of Translating Objects 92
7.1 Image processing stage 93
7.2 Tracking stage 95
7.3 Results. o 96

8 Conclusion 99
8.1 Contributions of this research 99
82 Futurework 100
Bibliography 101

1l

Chapter 1
Introduction

Image sequence analysis has been widely used in computer vision. This part describes the
use of image sequences for detection of airborne obstacles in the flight path of an aircraft.

Continued advances in the fields of image processing and computer vision have raised
interest in their suitability to aid pilots to detect possible obstacles in their flight paths.
For the last few years, NASA has been exploring the use of image sequences for detecting
obstacles in the flight path of an aircraft. NASA Langlev Research Center supported a
project to enable pilots to ‘see through fog’ using Passive Milli-Meter Wave (PMMW) images
of low resolution. For this project, Tang and Devadiga [12] from our group had developed
methods to locate the runway and detect obstacles on and outside the runway. The resulting
output can be used by the pilots to decide whether to land or not.

Obstacle detection is also possible with visible-light image sequences. In the design of
a High Speed Civil Transport (HSCT) aircraft with a limited cockpit visibility. NASA has
proposed a Synthetic Vision System (SVS) in which high resolution video images would
be obtained using cameras mounted on the aircraft. These images can be used to detect
obstacles in the flight path to warn the pilots and avoid collisions. For aircraft operations,
both airborne obstacles, as well as the obstacles on the runway surface should be detected.

Algorithms for detection of airborne objects from images are abundant in the published
literature. A systematic performance characterization of a number of target detection al-
gorithms was performed by using image degradation models for digital cameras. It was
observed that the algorithms that were studied have a good performance on images which
do not have background clutter. However, the performance degrades severely when back-
ground clutter is present. Thus, the goal of this work has been to design algorithms which

perform better in cluttered background environments, with low probabilities of false alarms

and mis-detections and capability of target detection early enough to avoid a possible colli-
sion. To achieve this goal, a special approach was used to discriminate hazardous objects on
collision course from the background clutter. Algorithin fusion was studied for combining
different algorithms in a statistical framework, to overcome their individual limitations. The
performance of the fused algorithm was found to be better than the individual algorithms
under appropriate conditions.

This part of the report is organized as follows: Chapter 2 describes the basic, well-known
algorithms used for detection of airborne obstacles. These algorithms were tested on real
image sequences provided by NASA. In Chapter 3. the performance of these algorithms
is experimentally characterized using the approach described by Kanungo et al. [10]. The
theoretical characterization of the algorithms’ performance is described in Chapter 4, and
the experimental performance is compared with the theoretical performance.

The main contribution of the research for the detection of hazardous objects is described
in the next two chapters. A special approach is proposed for discrimination of objects
on collision or near-collision course from background clutter. This approach is described in
Chapter 5 where differences in the behavior of translation and expansion in the image are used
to separate hazardous objects from clutter. Chapter 6 describes the Bayesian methodology
used for combining detection algorithms in a statistical framework. Performance of fused
algorithm is compared with that of the individual algorithms.

In addition to hazardous objects, it is also useful to detect and track objects crossing
in front of the aircraft. A real-time system using pipelined image processing hardware was
designed for this purpose. Chapter 7 describes the image processing operations which are
performed by the pipelined hardware, and the tracking operations performed on the host
machine to form a complete real-time system.

Chapter 8 concludes the part and explores avenues for future work.

Chapter 2

Object Detection Algorithms

This chapter describes the algorithms that were implemented to detect airborne obstacles
in the flight path of a flying aircraft. Statistical theory used for target detection is first
described, followed by a number of basic steps useful for removing background clutter, am-
plifying the signal to noise ratio, and detecting objects having different sizes and velocities.

Results obtained by using real image sequences are also described.

2.1 Background

NASA’s need for enhanced capabilities in obstacle detection using image processing requires
robust, reliable and fast techniques. These techniques should provide a high probability of
detection while maintaining a low probability of false alarm in noisy, cluttered images of
possible targets, exhibiting a wide range of complexities. The size of the image target can be
quite small, from sub-pixel to a few pixels in size. As an example, consider a Cessna aircraft
that has a length and wing-span of approximately 9m (30 ft) and the fuselage diameter of
approximately 1.2m (4 ft) [19]. The detection algorithm must be capable of detecting this
small target at least 25 seconds prior to a possible collision to allow for corrective actions
by the pilot. Assuming that both the aircraft are traveling at 125m/s (250 knots), their
relative velocity can be as high as 250 m/s (500 knots). In such case, they would be 6.25 km
(3.5 nautical miles) apart 25 seconds before collision. Using a camera with a resolution of
60 pixels per degree, the image size of the aircraft is 5.0 x 0.7 pixels from a side view, but
only 0.7 x 0.7 pixels from a front view. Furthermore, the detection algorithm must report
such targets in a timely fashion, imposing severe constraints on their execution time. Finally,

the system must not only work well under the controlled conditions found in a laboratory

and with data closely matching the hypothesis used in the design process, but it must be
insensitive - ie.. must be robust — to data uncertainty due to various sources. including
sensor noise, weather conditions, and cluttered backgrounds.

Extensive work has been done on the problem of target detection. When the signal to
noise ratio is low, it is preferable to use the ‘track before detect” approach. In this approach,
an object is tracked over multiple frames hefore making a hard decision on the presence or
absence of a target. The simplest way to integrate the input images over multiple frames
is by temporally averaging them. When the image motion of the object is verv small. as
in the case of an object being exactly on a collision course [14], this happens to be the
best approach. However, if the object has a significant image motion, other approaches are
needed. Nishiguchi et al. [16] proposed the use of a recursive algorithm to integrate multiple
frames while accounting for small object motion. A dynamic programming approach was
used by Barniv [4] and Arnold et al. {2] to detect moving objects of small size. The theoretical
performance of this approach was characterized by Tonissen and Evans [18].

The above algorithms perform well when the background is uniform. However. in real
situations the hazardous object should be detected not only against uniform background,
but also against backgrounds such as clouds, ground or water. The features introduced due
to a non-uniform background which interfere with object detection are collectively known
as clutter. Thus, the objective of the detection algorithms is to successfully detect the
hazardous object, without giving unnecessary false alarms from clutter. Subtraction of
consecutive images is often used to remove stationary clutter. However. an object on a
collision course could be nearly stationary in the image [14]. Hence, this method is not useful
for our application, since it could remove the object as well. Alternatively, morphological
filtering {6} removes objects of large size, usually corresponding to clutter while retaining the
objects of small size. This approach is useful in removing large clutter, such as clouds. But

it does not remove small-sized clutter.

2.2 Statistical decision theory for target detection

Statistical decision theory [13, 17] can be used to design optimal or near-optimal detection
algorithms, as well as to characterize their performance. The input to the algorithm is a
sequence of images, each composed of a large number of individual pixels. These pixels are
degraded by various sources, such as atmosphere, lens, and camera noise. Based on the

statistical behavior of this degradation, the image pixels can be combined in space and time,

to make statistically optimal decision about the presence or absence of a target. For making
these decisions, probabilistic models of the signal and its degradation can be used.

Let Hp and H; denote the hypotheses that the target is absent or present, respectively,
and P(Hy) and P(H,) denote their respective prior probabilities. Let z represent the vector
of observations from which one is supposed to determine the presence or absence of a target.
By Bayes’ rule, the posterior probabilities are given by:

_ Pl P(HY)

P(H |z P(Hy|z) = 2.1
(Hl2) = PR (Holz) = P20 (2.1
The ratio of these probabilities is given by:
P(H,|z P(H))p(z|H P(H
([2) _ PUR)pGIH) _ P(H) 29)

P(Hylz) — P(Ho)p(z|Ho) ~ P(H,)
where Ly (z) proportional to the ratio of the probabilities is called the likelihood ratio.
When the algorithm reports a target even where there actually is none, it is called a
false alarm, whereas when it does not report an existing target, it is called a mis-detection.
The performance of a detection algorithm is characterized in terms of false alarms and mis-
detections. According to the Neyman Pearson criterion [13, 17], the number of mis-detections
for a given rate of false alarms can be minimized by thresholding the likelihood ratio Ly (z).
The threshold is a function of the required rate of false alarms. In place of the likelihood
ratio, any of its monotonic function (such as the logarithm) can be used. Such a function is
called a discriminant function.
To decrease the probabilities of false alarms and mis-detections, one can integrate ob-
servations spatially or temporally. Let the N elements z;,29...2y5 of z be independent

observations. The likelihood ratio and its logarithm (log likelihood ratio) are given by:

p(zl»ZZ ZMH1 Zz|H1
Ly(z) = 2.3
(2) P(Z1 22 . ZmlHo lI:Il Zz|H0 (2:3)
[(z) =log Ly(z Z log p(2;|Hy) — log p(zi|Hy)] (2.4)
i=1

In the case of 2;’s having normal distributions in absence and presence of target, such that

their probability density functions are:

i 1 20— p)?
el = s | 5|t = s enp [2:5)
The log likelihood ratio is given by:
e G D A T N’
[(z) =logLy(z) = ; 502 =3 l:; zi] ~ 5 (2.6)

This is a monotonic function of 3~ z;,. Hence, thresholding the sum (or mean) of the obser-
vations yields an optimal detector. Since suin and mean are linear functions, they are also
normally distributed.

Consider a discriminant function which is normally distributed in absence and presence
of target as N(uo,05) and N(py.07), respectively with equal variances o2 = o2 but unequal
means gy and g. If this function is thresholded to obtain a particular false alarm rate, it
can be shown that the corresponding mis-detection rate is a function of its Signal to Noise
Ratio (SNR) given by (p1; — j1p)/00. Hence in this case, the performance in terms of false
alarm and mis-detection rates is determined by the SNR.

If N independent normal observations are made, their sum is distributed as N(0, No?)
in absence of target, and N(Nu, No?) in presence of target. Hence, the SNR is given by
Np/vVNo? = \/Nujo - ie., amplified by a factor of v'N. In other words, a signal with
SNR of S/v/N integrated over N frames could vield the same rate of false alarms and mis-
detections as one would get using a single observation with SNR of S. Hence, the SNR
required for detection reduces by VN when N frames are added. The same result is true for
averaging of NV frames, since the signal as well as the noise would be reduced by a factor of
N.

2.3 Pre-processing

Before any other algorithms can be applied. pre-processing should be performed on the input
images to suppress the background. The following approaches were used for pre-processing

the images.

2.3.1 Low-stop filter

In the case of an image with little or no clutter, a low-stop filter which subtracts from
every pixel, the local average of the neighborhood of that pixel effectively suppresses the
background intensity. This filter can be implemented by convolving the image with a 2-D
mask corresponding to the filter. Since the amount of computation increases with the mask
size, a small sized mask was used in conjunction with the pyramid approach described in

Section 2.4 to simulate the effect of a large sized mask.

2.3.2 Morphological filter

If the background has significant clutter, the low-stop filter is not as effective for removing it.
A morphological filter [6] can remove large sized features (usually clutter), while retaining
small sized features (usually targets).

The gray-scale morphological operations of dilation (@) and erosion (©) are defined as:

(fom)(r,y) = Jmax {f(r - o'y —y) +mx' Y} (2.7)
(fem)r.y) = min {fx+2y+y)—m(.y))} (2.8)

(" ')Em

where m is the mask using which the morphological operation is performed, and f is the
image which is considered to have a default value of —oc outside its domain. Morphological

closing and opening can be defined using the above operations as:

(fom) = (fomem>f (2.9)
(fom) = (fomom< f (2.10)

A difference between the original image and its morphological opening, known as the top-
hat transform outputs small-sized positive targets - i.e., bright targets in dark background.
On the other hand, the difference between the morphological closing and the original image,
known as the bottom-hat transform outputs negative targets - i.e., dark targets in bright
background. Each of these images are non-negative, and can be separately used to detect
targets.

A single mask for these morphological operations gives undesirable outputs for jagged
boundaries of large features. Hence, horizontal mask m, and vertical mask m, were used
separately as proposed by [6]. These masks are of length 5 with origin at the center of the

mask, with all the pixels having the default value of zero. The outputs are given byv:

F, = F - max{Fom,, Fom,} (2.
Foo= —F+4+min{Fem,Fem,} (2.

o [N}
—_ —
[) —
S —

2.4 Spatial integration

To detect targets of a number of different sizes and velocities, and to amplifv the SNR, the
target pixels in a given image can be integrated by forming an image pyramid. For this

purpose, the following basic operations are used:

-]

1. Low-pass filter (LP or LP): Convolves the image in 2 and y directions with the masks

m; =my = [1,3,(3),1]/8. or their mirror images. The parentheses denote the origins

of the masks.
fip(ry) = ZZfz—J y =) ma(x) my(y)
frplry) = ZZ}‘ 4ty +) me(a') my(y') (2.13)

2. Down-sampler (DS): Selects even numbered pixels in the input image to give an image

with half the resolution.
fose.y) = f(20,2y) (2.14)

3. Up-sampler (US): Forms the output image by putting the input image pixels in even
numbered positions, and zeros in odd numbered positions. The image is scaled by 2 to

maintain the image intensity during subsequent low-pass filter step.

frs(z,y) = 2f(x/2.y/2) when r. y are even: 0 otherwise (2.15)

These steps are combined to form two types of operations:

1. Low-pass down-sample operation (LP — DS): Decreases the resolution of the image

by two. Low-pass filter prevents aliasing of high frequencies in the image by suppressing

them.

2. Up-sample low-pass operation (S — LP): Increases the resolution of the image by

two. Low-pass filter smoothes the output of the up-sampler (containing zeros at odd
pixels) to produce the effect of interpolation. In this case, the mirror image masks are

used to compensate the asvmmetry in the masks.

The above operations can be used to combine pyramid formation with low stop or mor-
phological filtering by using the system shown in Figure 2.1. Images pyr[i] are formed by
successively applying low-pass and down-sample operations on the original image. These
images can be directly used as inputs to the morphological filter to detect targets at differ-
ent resolutions. Images pyr'[i] are formed by successively applying up-sample and low-pass
operations to the lowest resohition image pyr[n|, where n is the number of pyramid levels.
These operations remove the high frequency components of the original image. Low-stop
filtered images are given by Is[i] = pyr[i] — pyr'[i], and retain only the higher frequency

components not subtracted out by pyr'[i].

pyr(0] pyr[1] pyr{2] pyr(n]
LP->DS LP->DS F-------- = LP->DS
Input image
+ + +
1s[0] Is[1] 1s[2]
LP<-US [Ty s S LP<-US
pyr'{0] pyr’[1] pyr’[2] pyr’[n]

Figure 2.1: Spatial integration using pyramid construction: LP or LP: low-pass filtering
with original mask or its mirror image, DS: down-sampling, US: up-sampling. The pyvramid
images at stage 7 = 0...n are denoted by pyr[i]. Low-stop filtered images are obtained the
by subtracting the corresponding up-sampled pyramid outputs pyr'[7] from pyr[i] and are
denoted by [sli].

In this way, a hierarchy of images, each with half the resolution of the previous one is
formed. The size as well as the velocity of the object in the image scales as the resolution is
lowered. There is a particular resolution at which the object occupies no more than 2 to 3

pixels in length and width, which would be optimal for detection of the object.

2.5 Temporal integration

As shown in Section 2.2, integration of pixels corresponding to a target results in amplifi-
cation of the target SNR, and increased reliability of detection. Depending on the image
motion of the target, the following approaches can be used for integration of target pix-
els over a number of image frames. The performance of these approaches is characterized

experimentally and theoretically in Chapters 3 and 4, respectively.

2.5.1 Recursive temporal averaging

In the case of objects on a collision course [14] the image motion is very small. Hence, pixel
wise temporal averaging of a sequence of images would improve the detection performance.
However, direct use of temporal averaging results in infinite memory. To give a higher weight

to more recent observations, a recursive filter can be used. The output F(k) at time k for

any pixel is recursively obtained from the input f(k) at the same pixel using the following

steps:
1. Initialization: F'(0) = 0
2. Recursion: F'(k) = f(k) + oF(k — 1)

where « is a forgetting factor between 0 (full forgetting) and 1 (no forgetting).

2.5.2 Dynamic programming

In the case of moving targets. the temporal averaging filter does not improve the detection.
A dynamic programming algorithm [2] is more effective in detection of moving targets. The
algorithm is based on shifting the images before averaging them so as to align the target to
be detected. Since the velocity of the target could be arbitrary, the velocity space (u, v) is
discretized within the range of possible target velocities. A set of intermediate images F.
each corresponding to a particular velocity (u, v), are created recursively using the following

steps:
1. Initialization: For all pixels (ir,y) and all velocities (u,v), set

Flr.y;u,v;0) =0 (2.16)

2. Recursion: At time A, set

Fz,yiu,vik) = flroyk)+a max Flo—u—2'y—v—yiu ek —1) (2.17)

(' y")eqQ

where

Q=" W)t <2 < Tae - Yrin SV < Y} (2.18)
3. Termination: At time A, take
Foer(r.y: K) = max F(x,y;u,v; K) (2.19)
(u)eP

where

P = {(‘“" 1‘)'“7711’71 S u S Umaz » Umin S v S I’mar} (220)

The maximum operation in the recursion step is performed using the set @), which ensures
that the targets with velocities which do not fall on the grid are not missed. The set of

discretized velocities denoted by P determines the range of target velocities that can be

10

detected by the algorithm. The final maximum in the termination step combines the targets
corresponding to all the velocities. The number of elements in P and) are denoted by p
and ¢, respectively.

In the recursion step, a maximum is taken over ¢ pixels. If these pixels are all noise
pixels, they are more likely to give a false alarm if ¢ is large. Thus, the rate of false alarms
increases with ¢q. To get better performance, a smallest possible ¢ should be used. The value

of ¢ = 4 has been used in our experiments corresponding to a 2 x 2 neighborhood, given by:
Q = {(0,0),(—1.0),(0, —1). (-1, 1)} (2.21)

This ensures that the targets having fractional velocities are not missed. The asvimmetry in
this neighborhood is compensated by choosing i, = tmer — 1 and vpmin = tmar — 1. For

the case of ez = Vmar = 1, p =4 and P is given by:

P =1{(0.0),(1,0).(0,1),(1,1)} (:

[
[Nl
(\%]

The algorithm then detects targets with a maximum velocity of 1 pixel per frame. However,
when spatial integration is performed prior to dynamic programming, targets with larger
sizes and velocities can be detected.

On the other hand, if P = @ = {(0,0)} so that p = ¢ = 1, the algorithm reduces
to recursive temporal averaging, which gives the best performance for stationary targets.
However, the performance of temporal averaging sharply degrades if the target is moving,
whereas that of dynamic programming algorithin does not.

The output of the dynamic programming algorithm is an image, with large values at
positions where the target strength is high. However, the pixels in the neighborhood of the
target will also have a significantly large value. This can be resolved by using non-maximal
suppression, where the output is smoothed using a Gaussian filter with ¢ = 1.0, and each
pixel which is not a local maximun in its 3 x 3 region is set to zero. After this. only the pixels
which are local maxima remain, which can be thresholded to obtain the target locations.

It should be noted that separate processing should be performed if the targets are negative
- le., dark targets on a bright background. In the case of low-stop pre-processing. this is
done by using the negative of the pre-processed image, whereas in the case of morphological
pre-processing, both original minus open and closed minus original images are processed

separately.

11

2.6 Composite system

The above mentioned algorithms have been combined to form a composite system for target

detection. The steps that form this composite system are:

1. Temporal Averaging: This step is performed first in the case of objects in a uniform

background, having a very small image motion, such as those on a collision or near-
collision course. In such a case, temporal averaging improves the SNR and reduces the

processing rate required for subsequent steps.

2. Pyramid construction with low-stop or morphological filtering: In this step, a pvramid

is constructed to accommodate different sizes and velocities of objects. For pre-
processing the images, low-stop or morphological filtering is performed at each pyramid
level to remove background intensity. Low-stop filtering is more effective in low clutter
situations, whereas morphological filtering [6] is more effective in suppressing back-

ground clutter due to clouds and ground.

3. Dynamic Programming: A dynamic programming algorithm [2] is performed on pre-

processed frames to integrate the signal over a number of frames by taking the target
motion into consideration. Non-maximal suppression and thresholding are then per-

formed on the output.

It should be noted that one or more of these steps can be bypassed so that anv of the basic

algorithms described above can be tested individually using the same system.

2.7 Results using analog camera

The above target detection algorithms were applied to real image sequences obtained from
NASA. Figure 2.2 (a) shows an image from the sequence with the target aircraft flving away
from the host aircraft. The sequence can be played in reverse to simulate the aircraft on a
collision course. Since the aircraft on a collision course have a small image motion, temporal
averaging was the optimal detection algorithm in this particular case. The aircraft was at
a distance of approximately 4 nautical miles (7.4 km), and was barely visible in a single
image. Low-stop filter was applied before temporal averaging to remove the near-uniform
background. After temporally averaging and thresholding, the aircraft was detected as shown

in Figure 2.2 (b). Dynamic programming algorithm was performed on a sequence of images

12

(a)

Figure 2.2: Target detection using temporal averaging: (a) Original image with a distant
contracting target at 4 nautical miles. The target is approximately in the middle of the
image. However, due to degradation of image quality, it is very faint. (b) Detection of
the distant contracting target using low-stop filter pre-processing, temporal averaging and

thresholding. A false alarm in the mid-left area is most likely due to a smudge on the camera.

(after applying low-stop filter as pre-processing) in which an aircraft was flying from right to
left across the image as shown in Figure 2.3 (a). Dynamic programming algorithm detected
the aircraft with a low rate of false alarms. However, the target was dilated by the use of this
algorithm. Clutter removal using morphological filtering was also explored. Figure 2.4 (a)
shows a small aircraft flying in the middle-right part of the image. The image was actually
obtained by averaging 10 motion compensated images from an image sequence, in which an
aircraft was flying on the collision course. Application of morphological filter removed most
of the clutter due to edges of large-sized features. This aircraft which was on a collision
course, was retained. However, other small-sized features were also retained, resulting in a
number of false alarms. The result is shown in Figure 2.4 (b).

Chapter 3 presents a systematic performance characterization for temporal averaging as
well as dynamic programming using statistical image models for digital cameras. It was
observed that the algorithms performed very well when the background was clear. However,
the performance degraded severely in presence of clutter. In the case of cluttered images.
pre-processing using morphological filter worked better than that using low-stop filter. Most
of the clutter was removed, but small sized clutter, especially due to specular reflection from

water remained. Finally it was observed that the number of false alarms after applyving the

13

(a) (b)

Figure 2.3: Target detection using dynamic programming: (a) Original image frame with a
translating target. (b) Location of the detected target using dynamic programming (following

a low-stop pre-processing step).

(b)

Figure 2.4: Detection using morphological processing: (a) An average of ten motion-
compensated frames of an image sequence. The aircraft is in the middle-right part of the
image. (b) Detection using morphological filter. False alarms due to other features are also

seern.

14

algorithm, in general, was reduced but still significant.

2.8 Data collection using digital camera

The real data that was used for our previous work was captured using an analog camera
and recorded using NTSC video, thus containing additional noise that should not be present
when a digital camera is used on the actual flight. Hence, the performance of the algorithms
should be characterized without the undue interference from video noise. For this purpose,
a system was designed to capture image sequences from an aircraft using a digital camera.
and record them digitally on a disk. The camera used was 1K x 1A Kodak MegaPlus ES1.0
camera with the output at approximately 30 frames per second and a grav scale resolution
of 8 bits. Hence, a bandwidth of 30 MBytes per second and a storage of 108 GBytes per
hour of recording is required.

To capture the video image sequences with these large bandwidth and storage require-
ments, as well as perform the image processing operations in real time. a real-time image
processing system with pipelined image processor called DataCube MaxPCI was procured.
This system is a cost-effective way to meet high-throughput low-latency demands and has
become popular among researchers working on real-time vision problems. The New Technol-
ogy Disk (NTD) available with the DataCube MaxPCI has the required ability to perform
high-speed digital image recording. NTD is a Redundant Array of Inexpensive Disks (RAID)
that enables high-speed lossless digital image recording and playback. The image data can
be recorded and played back at a real-time frame rate (overall 40 MBytes/sec).

Image data has been obtained from flight tests conducted at NASA Langlev Rescarch
Center. A sample image captured using this system is shown in Figure 2.5. Work on
implementing the detection algorithms on the DataCube hardware using these images is
described in [11]. Detection of objects crossing the aircraft (instead of those on a collision
course) was performed on the DataCube svstem in real time. The algorithms used for this

purpose are described in Chapter 7.

Figure 2.5: An image captured from an aircraft using the digital recording svstem. The

target aircraft is in the middle-right part of the image.

16

Chapter 3

Performance Characterization of

Detection Algorithms

The most common tool used to characterize the performance of a detection algorithm is a
plot of its probability of mis-detection versus its probability of false alarm. as some tuning
parameter is changed. This plot is commonly known as the “receiver operating curve™ of the
system, or ROC, for short. Although ROCs are useful to represent the system performance
as a parameter is varied, they have several limitations. One disadvantage in using ROCs
is due to the fact that only one parameter can be varied at a time. Thus. if the effect of
variations of multiple variables needs to be studied, a different curve must be determined
for each of these variables making the analysis of the system performance more difficult. A
second disadvantage is that it is difficult to compare ROCs for different algorithms since they
may take different variables into account. Finally, obtaining ROCs is an expensive process
where factorial experiments must be carried out to determine the system performance at all
performance levels with the probability of false alarms ranging from zero to one.

In Kanungo et al. [10], a methodology which was adapted from the psychology literature.
and is discussed next, was proposed as an alternative characterization tool to summarize mul-
tiple ROCs into a single curve, solving the problems described above. This chapter describes
how to use this methodology to characterize the performances of the algorithms described
in Chapter 2. The performance of the dvnamic programning algorithm is compared against

that of temporal averaging. and thresholding of a single image frame.

17

Frequency PeMIDY
tl
No Target Target 2
13
Faisg alarm
Misdet 1::13/ n
I O c—
t Evidence Measure P(FA)
(a) (b)
Cost P(MD) Threshold SNRy
1.0
C P(MD)
T
T
T I
SNR SNR SNR SNR Variable \
T T
() (d)

Figure 3.1: Steps for performance characterization: (a) Step 1: Obtain the frequency dis-
tributions of the evidence measure for images with and without target. (b) Step 2: Obtain
the ROC. (c) Step 3: Determine the optimal operating point using either the expected cost
or the probability of detection given the probability of false alarm. (d) Step 4: Plot the

threshold value corresponding to the optimal operating point versus a variable of interest.

3.1 Performance characterization methodology

For the sake of completeness, the methodology for performance characterization proposed
in [10] is described here. Consider a detection algorithm that must report whether a given
image has a target or not. Typically, the algorithm would compute some measure of evidence
of target presence and compare it to some given threshold value. Whenever the evidence
measure is greater than the given threshold, a target would be reported. The performance
of the algorithm is affected by several factors, such as image contrast, target size, complexity
of the background, etc. The effect of variations of these variables on the overall performance
can be measured through the use of equivalent effects of some eritical signal variable by

following the four steps described below.

1. Obtain evidence distributions: The first step consists on estimating distributions of

evidence measures, one for images with target and another for images without target,

18

as illustrated in Figure 3.1 (a). This estimation is done non-parametrically by randomly
presenting the algorithm with images of both types and recording the frequency of the
evidence measure values reported by the algorithm, using a histogram. It should be
noted that the frequency distributions are used here only for estimating the false alarm
and mis-detection rates. The evidence measure which is thresholded may or may not
be derived from these distributions according to Bayes’ rule. Hence, the performance

of optimal as well as non-optimal detectors can be characterized by this approach.

. Obtain ROCs: The second step consists on constructing an ROC as the one shown in

Figure 3.1 (b) by varying the threshold used by the algorithm to compare against the
computed evidence measure. False alarms occur when a pixel in the given image does
not contain a target, but the evidence measure is greater than the threshold being
used. Mis-detections occur when the given image contains a target, but the evidence
measure is less than the threshold. The probabilities of false alarms and mis-detections

can be approximated by their frequency ratios:

Number of false alarms

P(FA) = P(H||Hy) =
(FA) (Hi[Ho) Total number of input pixels without target

Number of mis-detections
P(MD) = P(Hy|H)= umber of mis (je? 1onq. _
Total number of targets in input images

where Hqy and H, denote the hypotheses corresponding to the absence and presence of

a target, respectively.

. Determining the optimal operating point: The optimal operating point (or its corre-

sponding threshold value) can be specified in different ways, depending on how much
prior knowledge is available. If the prior probabilities and costs are known, the optimal
operating point can be defined as the one minimizing the expected cost. Let). Cy,.
C\1, and Cjyg, be the costs of a false alarm, a mis-detection, a correct detection. and a

correct rejection, respectively. The expected cost is then given by:

E[C] = [P(Ho|Hy)Coo + P(H,|Ho)C1o] P(Hyp)
+ [P(Ho|H,)Co + P(Ho|H,)Ch1]) P(H,) (3.1)

The optimal operating point is found by minimizing E[C] with respect to the threshold
to be used by the algorithm. In the most likely case when the costs are difficult to set.
an alternative way to define the required operating point is to use the Nevman-Pearson
criterion — i.e., to maximize the probability of detection for a given probability of false

alarm.

19

Independently of which definition is used, the optimal operating point depends on the
signal to noise ratio (SNR) in the input image. For example, increasing the target
contrast results in an increase of the SNR and, hopefully, in an improvement of the
algorithm performance for a given threshold value. The optimal operating points for
different SNRs can be found by repeating steps 1 and 2 for the corresponding SNR
values and determining the optimal point for each of the resulting ROCs. Once this
is done, a graph of the expected cost or the probability of detection versus SNR can
be plotted, depending on which definition of operating point is being used. This is
illustrated in Figure 3.1(c). Finally, let SNRy and T be the SNR and the associated
threshold values for the optimal operating point for a given level of performance, as
shown in the figure. The level of performance is specified by either a desired expected
cost of classification or a desired probability of mis-detection, again, depending on

which optimal criterion is used.

. Performance analysis with respect to variables of interest: Besides SNR, other factors

affect the algorithm performance and merit study. Examples are the size of the target.
the amount of target motion on the images, and the amount and nature of image
clutter. In order to study these effects, steps 1 to 3 are repeated for different values of
variables representing these variations. These results are then summarized in a graph
where the threshold T' determined in step 3 is plotted against the value of the variable
of interest, as shown in Figure 3.1(d). A fairly flat plot indicates that the effect of the
variable being considered on the optimal operating point of the algorithm is negligible.
On the other hand, a steep plot indicates that the variable has a high impact on the

performance.

It should be noted that a smaller SNR threshold T implies better performance, since

weaker targets can be detected with the same given rates of false alarms and mis-detections.

Measuring the performance in terms of the SNR threshold makes it easier to measure and

compare the performance of different algorithms, or the same algorithm with different pa-

rameters. This is because the variables, such as the false alarm and mis-detection rates are

eliminated from the curves, making place for other parameters.

20

3.2 Experimental protocol

In this section, the experimental protocol used to characterize the performance of the target

detection algorithms, is described in detail. The protocol consists of the following compo-

nents, specifying how to

1.

2.

Generate images of simulated targets,
Apply the detection algorithm,

Estimate the rates of false alarms and mis-detections (ROCs) for different sets of

parameters, and

Characterize the algorithm performance by condensing the ROCs into a performance

curve.

3.2.1 Image generation

In order to characterize the performance of the detection algorithm, it is applied to sequences

of synthetic images with and without targets. While the images with targets are used to

estimate the mis-detection rate, the images without targets are used to estimate the false

alarm rate. The images can have the following different types of backgrounds:

1.

Synthetic noise from camera model: The background is assumed to have a constant

value Apy. The noise is artificially simulated, using the camera noise model.

Real noise from a digital camera: The background images are taken from a sequence

of images obtained from a digital camera looking at a scene with constant intensity

such as clear sky, or white paper.

Real background an from analog camera: The background images are obtained using

a sequence of images with significant clutter. The sequence, which was provided by
NASA, was captured using an analog camera mounted on a flying aircraft. Figure 3.2

shows a typical frame of this sequence.

Generation of image sequences

To estimate the number of false alarmns, the background images themselves, without any

addition of targets are used directly. The size of these images is N, x N,. For estimation of

21

Figure 3.2: A sample image from the real background sequence provided by NASA. The

image sequence was taken from an analog camera mounted on an aircraft.

the rate of mis-detections, simulated targets are inserted in the background images generated
as described below. For each simulation, a target file is created having information on the
position, velocity, size, amplitude and each target to be placed in an image. The image size
is taken as V; x N,. The number of targets to be inserted in everv image is Ntarg. The
target trajectories are generated in such a way that the detection of one target does not
interfere with the detection of another. This is accomplished by drawing a window around
each target trajectory. The next generated trajectory is valid onlv if the window around
it does not overlap with the windows around the previously generated targets. Otherwise,
the procedure is repeated by generating another trajectory, until the total number of valid
trajectories is Nygpg.

The velocity (V;,V),) of the targets is uniformly distributed so that —i,,0, < Vo < tm0r
and —vpe; <V < ¥pge. The position of the targets is specified for the last frame i.e.
when the detection is completed. The position of the target in other frames is given by
(z — Vz Aty — V,At), where At is the time-interval between the given frame and the last
frame.

A target can be a point target, or have a specified height and width. The size of the target
is given by s, x s,. The target amplitude is given by 4. For point targets, the amplitude
corresponds to the contrast of the pixel it occupies, with respect to the background. However,
for an extended target, the contrasts of all the occupied pixels are given by the product of

the target amplitude and the fraction of the area in the respective pixel that is covered by

22

the target.

Figure 3.3 (a) shows the trajectories of simulated targets to be added to an image, and
Figure 3.3 (b) shows a zoomed part on a portion of the image. The end of the trajectorics
are marked by blobs. The black box around the target denotes the region where another
target cannot be present, to reduce the interference between the targets.

Once the file describing the targets is created, an image sequence of Nirame frames is
generated. For each frame, the position of the targets are calculated, and the targets are in-
serted accordingly. For point targets, the amplitude is added to the background image in the
target position pixel. For extended targets occupying a number of pixels (fully or partially),
the product of the amplitude and the fractional occupancy is added to the background image

at that pixel.

Addition of noise

Two types of camera noise [8, 11], the Fixed Pattern Noise (FPN) and the temporal noise
are added to the sequences created using svnthetic backgrounds. FPN has two components,
additive and multiplicative. The parameters of this noise change from pixel to pixel. but do
not change with time. The parameter values for each pixel are determined a priori using the
camera, and stored as images. On the other hand, the temporal noise is completely random.
and is generated separately for each frame. The temporal noise approximately follows a

Gaussian distribution with a variance of:

2
notse

o =wy + unl

where I is the expected gray value of the pixel, and wy, w; are the parameters of the particular
camera. However, since the background amplitude A4, is constant for the experiments with

2
noise

simulated noise, and the target amplitude A < 4,,, we have I = A + Apg = Ay and o

is approximately constant, given by:

ot~ + w Apg

nowse —

Hence, the noise can be approximated as Gaussian noise with a constant standard deviation
of 0npise. The values of the parameters for the particular camera were estimated [11] as
wo = 0.171 and w; = 0.0056. For background A = 128, this gives g5 = 0.942. The image

1s quantized to give the output in byvte format.

23

e " Tu Lanr - ‘
-’I.......l.f I
:: I=..' ..'.:=ll-. .
"-l"-l'- T R
Ly R
n n N
USHo i R I
l-.- ‘. l..l=.l- F’:
am "5 g™y [-
(a) (b)
o . |
- * i*
- »
¥

(e) (f)

Figure 3.3: Detection using dynamic programming: (a) Simulated targets trajectories. There
are 200 targets, and the image size is 960 x 960. The end of the trajectory is marked by
a blob. The targets are separated so that there the interference between them is reduced.
The black box around the target denotes the region where another target cannot be present.
(b) A zoomed part of the target trajectory image. (c) The dynamic programming output
of a typical experiment (before non-maximal suppression). (d) Zoomed part of the output.
(e) The dynamic programming output of the same experiment without adding targets - i.e.,

false alarms. (f) Zoomed part of the output.

24

3.2.2 Algorithm application

The target detection algorithm whose performance is to be characterized is applied to each
simulated image sequence. In the cases of svnthetic images, and digital camera sequences,
fixed pattern noise (FPN) can be corrected in advance by using pre-computed parameters
of FPN for each pixel. However, these parameters are perturbed by a random amount
corresponding to their estimated covariance, to model the error in estimating these val-
ues. Experiments are performed without and with correction of FPN, and the results are
compared.

According to the type of background used, preprocessing in the form of a low-stop filter or
a morphological filter are performed before applving dynamic programming. After dynamic
programming is applied, non-maximal suppression is performed to ensure correct counting of
false alarms and mis-detections. The output (before non-maximal suppression) of a typical
experiment with 200 targets is shown in Figure 3.3 (¢) and (d) where the latter shows a

zoomed part of the output.

3.2.3 Estimation of false alarms (FA) and mis-detections (MD)

The algorithm to be characterized is applied on the image sequences with as well as without
targets. The sequences without targets are used to estimate the false alarm rate, whereas
the sequences with targets are used to estimate the mis-detection rate.

For the false alarm rate, the histogram of the output image is obtained. Using this
histogram, the false alarm rates for different thresholds can be obtained. For the mis-
detection rate, only the pixels in a specified window of 5 x 5 pixels around the specified
target position are checked. For ecach such window corresponding to a single target, the
maximum value of the algorithm output is taken. A histogram of these maximum values is
formed, and processed to obtain the mis-detection rates for different thresholds. The false
alarm and mis-detection rates are averaged over a number of simulations Np4 and Nasp.
respectively.

The number of simulations to test can be specified so that the standard deviation in the
estimate of the false alarm or mis-detection rate is below a given value. This can be seen
by observing that the occurrence of an event such as a false alarm or a mis-detection can
be modeled as a Poisson process and therefore the variance of the total number of events is
equal to the mean. Thus, if n events are observed, the standard deviation of the absolute

error in the number of events is /n. and that of the relative error is 1/\/n. For example, for

n = 10 events, the error o is 3.2, or 32 % of the number of events. This error estimate can

be confirmed by measuring the variance of these rates across the simulations.

3.2.4 Performance characterization

Using the estimated false alarm and mis-detection rates, the receiver operating curve (ROC)
can be plotted showing the rate of mis-detection against the rate of false alarms. The mis-
detection rate for a specified false alarm rate (F Ar) is noted from the curve. The simulations
are repeated for a number of signal amplitudes A. The ratio of this amplitude to noise level
corresponds to the SNR. The value of the signal amplitude for a specified mis-detection rate
(M Dr), and the above false alarm rate is obtained. This is considered as the threshold signal
value (Ar). The number of simulations used is at least Npy = 10/F Ar in the case of false
alarms and Ny p = 10/M Dr in the case of mis-detections, so that for the rates FAr and
M Dy, an average of at least 10 events would be observed, giving an error o of at most 32
%. Due to constraints on the execution time, larger number of experiments were not used.
although they would be desirable for reducing this error.

Other parameters, such as the size of the target, can be varied one at a time. and the
variation of Ar can be plotted against the respective parameter to determine the effect of

the parameter on the algorithm performance.

3.3 Results

The target detection algorithm was tested on 3 categories of images as described in the

protocol. The results are shown and compared in the following sections.

3.3.1 Synthetic noise from camera model

In this case, the noise was synthetically generated using the noise model of the Kodak
Megaplus ES 1.0 digital camera. Targets of varying size were added for mis-detection anal-
ysis. Experiments without and with correction of FPN were performed.

Figure 3.4 (a) and (b) show the plots of the false alarm and mis-detection rates, re-
spectively, against the threshold value, for experiments without FPN correction. The mis-
detection rates are shown for a number of signal amplitudes for 1 x 1 targets. The mis-
detection rate is measured as the ratio of the average number of mis-detections, to the total

number of targets in a simulation. However, the false alarm rate is measured as the average

26

Table 3.1: Table of parameters used for the experiments with the following image categories:

(1) Synthetic noise from camera model, (2) Real noise from a digital camera, (3) Real
background from an analog camera.

Description Parameter Category
(1) (2) (3)
Image x size N, 960 960 640
Image y size Ny 960 960 480
No. of targets Niarg 200 200 50
Maximum x velocity Usnax 1 1 1
Maximum y velocity Urnar 1 1 1
T size Sy 0.5 to 2 2 2
y size Sy 0.5 to 2 2 2
Amplitude A 1.0 t0o 15.0 | 1.0 to 6.0 | 10.0 to 70.0
Number of frames Nirame 32 32 32
Background value Apg 128 ~ 200 not used
Noise standard deviation O noise 0.942 not used not used
Forgetting factor o 15/16 15/16 15/16
Number of FA simulations Nrpa 500 1 1
Number of MD simulations Nup 50 10 10
Threshold FA rate F Ay 0.02 10 10
Threshold MD rate MDy 0.001 0.01 0.01

27

number of false alarms per simulation. instead of the ratio of the number of false alarms to
the total number of pixels. This is done to give a better idea of the algorithm performance.
Figure 3.4 (c) shows the plot of mis-detection rate against false alarm rate for different
amplitude values for 1 x 1 targets. The point of threshold false alarm rate F A7 is set to 0.02
false alarms per simulation, which corresponds to a total of 10 false alarms for Nz 4 = 500
simulations. Figure 3.4 (d) shows the plot of mis-detection rate against the amplitude values
for the above rate of false alarms. The Ay for the threshold mis-detection rate of M Dy is
interpolated, and marked as a circle. The M Dy is set to a probability of 0.001 per target,
which corresponds to an average of 0.2 mis-detections per simulation for a simulation with 200
targets, or a total of 10 mis-detections for Ny, = 50 simulations. The corresponding graphs
for the case where fixed pattern noise compensation was applied are shown in Figure 3.5.
The above experiments are repeated for other sizes of targets, and the Ay calculated from
these is plotted against the size of the target. Resulting plots for the experiments without
FPN correction are shown in Figure 3.6 (a) for square targets (size z x z) and in Figure 3.6 (b)
for rectangular targets (size 1 x). The corresponding results for the experiments with FPN
correction are shown in Figure 3.6 (¢) and (d). The threshold amplitudes for various sizes
are tabulated in Table 3.2. It is seen that larger targets require smaller signal amplitudes
for detection implying better performance. Similarly, the signal amplitudes required when
FPN correction is applied are much smaller than those when the correction is not applied,

implying better performance in the former case.

Table 3.2: Results of dynamic programming algorithm on simulated image sequences without
and with FPN correction. Threshold amplitudes are shown for false alarm rate of 0.02 per

simulation and mis-detection rate of 0.001 per target.

Size No FPN correction | With FPN correction
1x1 14.85 4.72
1x1.5 11.43 3.48
1x2 9.38 3.10
D x 1.5 10.49 2.55
2x2 6.35 2.04

28

False Alarm Rate

10° ———— s e e
10*
10°
x —
—
(T
10 ~.
- \
10 \
L
‘0.‘ — R R
0 1 2 3 3
Thr
(a)
= size: 1x1
10 v
1079 1\\$*\
— \\\
e
— N
S
S1p7 \‘\ \— |
9\ .
- L
N
107" Ll
10’54_%_‘M;77A_‘ U PR e
10° 107 10" 10° 10’
FA

Figure 3.4: Results for camera noise model without FPN correction: (a) Plot of FA rate
(average number per simulation) against threshold (b) Plot of MD rate against threshold,
for a number of signal amplitudes (higher amplitudes towards right) for 1 x 1 targets. (c¢) Plot
of MD rate against FA rate (for marked amplitude). The data points are marked as crosses.
The MD rate when FA rate is F Ay = 0.02 per simulation is interpolated. and plotted as
circle. (d) Plot of MD rate against amplitude for FA rate of F.Ay = 0.02 per simulation.

The value amplitude when MD rate is M Dp = 0.001 per target is interpolated and marked

as a circle.

N size: 1x1
100 e
107
107 /
g /f
/|
107 f i r/
C
f/
r# hr
104 1
131415
10° +
0 2 4 6 8 10
Thr
(b)
' size: 1x1
10 3
]
]
L 1
107 T
8 B
It
<
w
®
g
107
10" oo - i S S S
13 135 14 14.5 15
Amplitude

Faise Alarm Rate

10° T e e
10* \\
\‘\
\
10° \
< “‘\
w \\
10° \
\\‘
‘\
|
102 Y]
101A4_ e he o - 1 [S—
05 1 1.5 2
Thr
(a)
size: 1x1
10° - —
—_
107" \ 1
\\f—— 3
1072
\\\
Q il .
g -
107
—_ .
0w —e— §
1075 -2 (] 2
10 10f 10 10
FA
(¢)

size: 1x1

7
/ /

|3
10° /

L - —_]
10 »
5
1 .
0 0 2 3 4
Thr
(b)
size: 1x1
10° - -
10
o
=1
(=]
[}
1o
®
Q
=
10’
.
05 35 4 5 5 55 5
Amplitude

Figure 3.5: Results for camera noise model with FPN correction: (a) Plot of FA rate (average

number per simulation) against threshold (b) Plot of MD rate against threshold, for a number

of signal amplitudes (higher amplitudes towards right) for 1 x 1 targets. (c) Plot of MD rate

against FA rate (for marked amplitude). The data points are marked as crosses. The MD

rate when FA rate is FFAy = 0.02 per simulation is interpolated, and plotted as circle.
(d) Plot of MD rate against amplitude for FA rate of F Ay = 0.02 per simulation. The value

amplitude when MD rate is M Dy = 0.001 per target is interpolated and marked as a circle.

30

size change (size x size) size change (1 x size)
15 T ' ' 15— - e - -
“ i
14 1451 {
_ ! \\ I
213t 4 S 14 \
g g N *
&y Z135 N -
= s N
o -
St - B AN
I | Tizs hN
w 1o} ‘ w \
® i ® 12 \ 4
€9 g
£ 2118}
£ - £ 1
~ b3
|
, \ 105 }
|
6 s [1 f e [|
1 1.2 1.4 1.6 18 2 01 12 1.4 16 1.8 2
size size

size change size change
T 48 T

0.001

0.001
E
S

=0.02, MD
I
a2 N

w
@

Ampilitude @ FA=0.02, MD:
w
-

Amplitude @ FA
w
=3

Figure 3.6: Performance curves for simulated targets: (a) Plot of amplitude against the
target size (z x r) for experiments without FPN correction. The data points are marked as
crosses. (b) Plot of amplitude against the target size (1 x r). (¢) and (d) Corresponding

plots for experiments with FPN correction.

31

3.3.2 Real noise from a digital camera

In this case, instead of synthetically generating the noise. background images captured using
the Kodak Megaplus ES 1.0 digital camera looking at the skv were used. Targets of size
2 x 2 pixels were synthetically added for the mis-detection analysis. Experiments without
and with correction of FPN were also performed.

The false alarm threshold was set FA; = 10 per simmulation, resulting in a total of 10
false alarms for Np4 = 1 simulation. The mis-detection threshold was set to M Dy = 0.01
per target, corresponding to 20 mis-detections for Ny, = 10 simulations with Ny, = 200
targets. Unfortunately, the performance at lower rates of false alarms and mis-detections
could not be reliably estimated because of the limited number of background images available.
However, one can extrapolate the false alarm and mis-detection rates to study the behavior of
the algorithm for lower rates. Due to the normal distribution of noise, even a small increase
in the threshold reduces the false alarm and mis-detection rates dramatically. Hence, a
somewhat higher target amplitude can be expected to reduce these rates to an acceptable
level.

In the case of the experiments without FPN correction, the plot of mis-detection rate
against false alarm rate for different levels of target amplitude is shown in Figure 3.7 (a).
The plot of mis-detection rate against SNR for false alarm rate of F A7 = 10 per simulation
is shown in Figure 3.7 (b). The corresponding plots for the experiments with FPN correction
are shown in Figure 3.7 (¢) and (d). The target strength required for detection at the specified
rates of false alarms and mis-detections are marked by circles in Figures 3.7 (b) and (d).
It can be seen that the target strength required when FPN is not corrected (A = 3.22)
is higher than that required when FPN correction is applied (Ar = 1.86), implying better

performance in the latter case.

3.3.3 Real background an from analog camera

In this case, a real aerial background. obtained from an analog camera used during a flight
test was employed. Targets of size 2 x 2 pixels were synthetically added for mis-detection
analysis.

In order to suppress the background, low-stop and morphological pre-processing were
separately applied, and the results compared. Since the background was cluttered, a much
higher signal was required for satisfactory detection. Even then. the false alarm rate does not

reduce sufficiently, thus showing that more post-processing would be required after applyving

32

siza: 2x2,ncorr size: 2x2.ncorr

10 . 10 (- . -
10° ¢
1
10’ 2 |
<
a P
= i \K ©10 ©
0 ! [=]
10 - 3 =
L 3
— 4
10" ° 5
102 . i B 0 —
10 10° 10’ 10° 10° 10 3 35 4 45 5
FA Amplitude
(a) (b)
size: 2x2,corr
3 e o size: 2x2,corr
10 ' . sie
10t b
10’ 3 o
il
o <
H . w10
1o° ~ m—— 15 %
DN~ =
| 2
|
10 ' Lf @ e e e 25
-2
10 . R -
10° 10° 10 05 2 25
FA Amplitude

(c) (d)

Figure 3.7: Results for real noise from camera for 2 x 2 targets: (a) Plot of MD rate against
FA rate (for marked amplitude) for images without FPN correction. The data points are
marked as crosses. The MD rate when FA rate is F. 47 = 10 per simulation is interpolated,
and plotted as circle. (b) Plot of MD rate against amplitude for FA rate of F4; = 10
per simulation. The data points are marked as crosses. The value of 4; where MD rate is
M Dy = 0.01 per target is interpolated and marked as a circle. (¢) and (d) Corresponding

plots for FPN corrected images.

33

the algorithm. However, since the number of false alarms (plus true candidates) would be
small after this processing, the time complexity of subsequent algorithms would be reduced
significantly. The techniques described in Chapter 5 can be used to separate the remaining
background clutter from the genuine targets. These techniques utilize the difference in the
image translation and expansion between an object on a collision course. and the background
clutter.

The false alarm threshold was set F'A7 = 10 per simulation resulting in a total of 10 false
alarms for Ng4 = 1 simulation. The mis-detection threshold was M Dy = 0.01 per target,
corresponding to 10 mis-detections for Nyrp = 20 simulations with Niarg = 50 targets. Again,
unfortunately, lower rates for false alarm and mis-detection cannot be reliably estimated due
to the limited number of background images available.

The results for the morphological filter and the low-stop filter are shown in Figures 3.8 and 3.9,
respectively. It can be seen that the target strength required when the morphological filter
(A7 = 17.8) is used is much lower than that required when the low-stop filter (A, = 57.8)
is used. The morphological filter is thus better, and the reason for this is that the morpho-
logical filter reduces clutter corresponding to large features, whereas the low-stop filter does
not do this effectively. However, both result in much poorer performance than that obtained

with a digital camera with clear background.

3.3.4 Comparison with other methods

The performance of the dynamic programming algorithm was also compared with other
methods such as simple thresholding on a single frame, and temporal averaging on the
same number of frames. The comparison was made using FPN correction on images with
simulated camera noise. The results of applying the dvnamic programming algorithm. simple
thresholding on a single frame, and temporal averaging on image sequences with 2 x 2
moving targets are shown in are shown in Figures 3.10, 3.11 and 3.12 respectively. Temporal
averaging was also applied on image sequences with stationary targets instead of moving
targets, the results of which are shown in Figure 3.13.

Similar experiments were performed with other target sizes. Table 3.3 shows the compar-
ison the for these algorithms using various target sizes. The plots of the threshold amplitudes
against target sizes are shown in Figure 3.14. Again, smaller threshold amplitudes imply
better performance as explained before.

It can be seen that the performance of single frame thresholding, as well as temporal

34

False Alarm Rate

20

25

=10

MD @ FA
3

/
L
S

size: 2x2,morph
Yy /’—/—’/

/)
//

v i Va
3 /o {
15 o !
L ,/ﬁ ,F
P [‘\‘
» Pl
2
0 5 10 15 20
Thr
(b)
size: 2x2,morph
"\\

17 18
Amplitude

(d)

Figure 3.8: Results for real cluttered background for 2 x 2 targets using morphological filter

in the preprocessing: (a) Plot of FA rate (average number per simulation) against threshold

(b) Plot of MD rate against threshold, for a number of signal amplitudes (higher amplitudes

towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The data

points are marked as crosses. The MD rate when FA rate is FAp = 10 per simulation is

interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of

FAr = 10 per simulation. The data points are marked as crosses. The value of Ay where

MD rate is M Dy = 0.01 per target is interpolated and marked as a circle.

False Alarm Rate

10
10°
10"
E o L\\
10° e
Ty
10‘f
10°
0 10 20 30 40 50 60 70
Thr
(a)
3 size: 2x2.istop
10 ,
10°
10’
o
S
10°
10
-2
10 -
107 10° 10'
FA
(¢)

size: 2x2 istop

70 80

size: 2x2 Istop

=10

MD @ FA

e 6 58 60
Amplitude

(d)

Figure 3.9: Results for real cluttered background for 2 x 2 targets using low stop filter in
the preprocessing: (a) Plot of FA rate (average number per simulation) against threshold
(b) Plot of MD rate against threshold, for a number of signal amplitudes (higher amplitudes

towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The data

points are marked as crosses. The MD rate when FA rate is FAp = 10 per simulation is
interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of

FAr = 10 per simulation. The data points are marked as crosses. The value of 47 where

MD rate is M Dy = 0.01 per target is interpolated and marked as a circle.

36

averaging are much poorer than that of the dynamic programming. However. if stationary
targets are used instead of moving targets, the performance of temporal averaging is slightly
better than that of dynamic programming, showing that temporal averaging is the best

choice when the targets are stationary.

Table 3.3: Results of target detection algorithms on simulated image sequences with FPN
correction. Threshold amplitudes are shown for false alarm rate of 0.02 per simulation and

mis-detection rate of 0.001 per target.

Size Dynamic | Single frame | Temp. Avg. | Temp. Avg.
prog. thresh. (moving) (stat.)
1x1 4.72 23.03 33.82 1.63
1.5 x 1.5 2.55 10.68 16.99 2.11
2x 2 2.04 8.17 11.67 1.65

37

False Alarm Rate size: 2x2

\\ 10" / // /
10 \ / / “/,/:»

e L - [e " N
0 0.5 1 15 2 0 05 1 1.5 2 25 3
Thr Thr

(a) (b)

size: 2x2 .
LT e e, s size: 2x2
10 r
1
10 \ 10
~__ ~
=
Qa2 S s T
Y g 10?
®
o
=
-3 \k 3
nr 10
25 \\\‘
107
107 10° 10° 10 0,5 2 25
£A Amplitude
() (d)

Figure 3.10: Results for camera noise model with FPN correction for 2 x 2 targets using dv-
namic programming: (a) Plot of FA rate (average number per simulation) against threshold
(b) Plot of MD rate against threshold, for a number of signal amplitudes (higher amplitudes
towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The data
points are marked as crosses. The MD rate when FA rate is FA7 = 0.02 per simulation is
interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of
FAr = 0.02 per simulation. The value of 47 when MD rate is M Dy = 0.001 per target is
interpolated and marked as a circle.

38

False Alarm Rate size: 2x2
10 S — e 107 —

o
hd]
10° 107
rf
2 4 I f
10 \“‘ 10 B 84
-5
R — 2 4 5 6 0y 2 4 6 8 10
Thr The
(a) (b)
size: 2x2 size: 2x2
10 10— , —r
ST
1077 \&

MD
3
e
) M
- J//
MD @ FA=0.02
3

10 10 10" 10 10' 74 7.6 78 8 8.2 84
FA Amplitude

(¢) (d)

Figure 3.11: Results for camera noise model with FPN correction for 2 x 2 targets by
thresholding a single frame. (a) Plot of FA rate (average number per simulation) against
threshold (b) Plot of MD rate against threshold, for a number of signal amplitudes (higher
amplitudes towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The
data points are marked as crosses. The MD rate when FA rate is FAr = 0.02 per simulation
is interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of
FAr = 0.02 per simulation. The value of Ay when MD rate is M Dy = 0.001 per target is

interpolated and marked as a circle.

39

size: 2x2

R B False Alarmiﬂale 100 e e
10 T R . - A
it
/‘r""‘/
'
\‘““\“
i
; ‘m‘
2 |
10 H‘J q
1h
Q 1
= \j‘\
|
o'}
I
M
il
9108
-4 5
. 1 R
10 0 0.2 04 06 0.8 1 1.2 14 0 0 2 4 6 8 10
Thr Thr
(a) (h)
LT3 —— ,,S'Z,eizxz o size: 2x2
10"
107% { 5
g 3
3 w
10° A g
\ g
N
107) A 10 \K h
. | |
10 E ") 10" S : : - i
107 10° 10° 9 95 10 10.5 " "5 12
FA Amplitude
(c) (d)

Figure 3.12: Results for camera noise model with FPN correction for 2 x 2 moving targets
using temporal averaging. (a) Plot of FA rate (average number per simulation) against
threshold (b) Plot of MD rate against threshold, for a number of signal amplitudes (higher
amplitudes towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The
data points are marked as crosses. The MD rate when FA rate is F.4; = 0.02 per simulation
is interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of
F A7 = 0.02 per simulation. The value of Ay when MD rate is M Dy = 0.001 per target is

interpolated and marked as a circle.

40

False Alarm Rate 0 size: 2x2

,,,,,,,

o
b s
3
10" 10 /
[
i I
2 ‘l J‘
]0 ‘0 13 15 18
10" S 10° ! .
0 0 0.2 0.4 086 08 1 1.2 1.4 0 05 1 ™ 1.5 2 25
Thr r
(a) (b)
size: 2x2
10° ¢ - e 5 size: 2x2
10° e s - -
10t
10"
107 o
g
o
b 107
B ®
107 -
b5
-3
10 - 07} 1
10 A -4 N
1072 10° 10° 10,3 14 15 16 17 18
FA Amplitude

() (d)

Figure 3.13: Results for camera noise model with FPN correction for 2 x 2 stationary targets
using temporal averaging. (a) Plot of FA rate (average number per simulation) against
threshold (b) Plot of MD rate against threshold, for a number of signal amplitudes (higher
amplitudes towards right). (c) Plot of MD rate against FA rate (for marked amplitude). The
data points are marked as crosses. The MD rate when FA rate is F A7 = 0.02 per simulation
is interpolated, and plotted as circle. (d) Plot of MD rate against amplitude for FA rate of
FAr = 0.02 per simulation. The value of Ay when MD rate is A/ Dy = 0.001 per target is

interpolated and marked as a circle.

41

size change size change

5 24 -

22r
_45 -
3 8

g %
a 4 o

s 248
8 8
o [=]

»35 116
b &
@

@ 1
2 E
i a

g S12

25
10
8

size change size change
35 g v = 5 v
45
hl g
3
22 s
g% Yask
=] S |
< '
p P18
@20t @
@ [
g .
£
<15 <
2
i .
101 1.2 1.4 18 1.8 2 1‘51 12 1.4 16 1.8 2
size size

() (d)

Figure 3.14: Performance comparison of several algorithms: Plot of amplitude against the
target size (r x x) for experiments without FPN correction using (a) Dynamic programming,
(b) Thresholding single frame, (c) Temporal averaging (moving targets), (d) Temporal av-

eraging (stationary targets).

42

Chapter 4

Theoretical Performance of Detection

Algorithms

In this chapter, the approximate theoretical performance of the algorithms presented in
Chapter 2 are derived. The theoretical derivations are based on the paper by Tonissen
and Evans [18]. The theoretical performance is compared with the experimentally observed
performance described in Chapter 3. Effects of approximations used in the derivations are

also described.

4.1 Dynamic programming algorithm
The dynamic programming algorithm described in Chapter 2 can be summarized as follows:
1. Initialization: For all pixels (x,y) and all velocities (u,v), set

Flroy;u,v:0)=0

2. Recursion: At time k, set

F(z,y;u,vik) = (1 — o) f(x,y: k) + n‘(ma)xQF(;zt —u—2y—v—yiuvik—1)
x' .y e

3. Termination: At time /4. take

Fra (2, y: K) = max F(r,y;u,v; K)
(up)eprP

43

The number of elements in sets P and () are denoted by p and ¢, respectively. The values
of p = ¢ = 4 have been used in our implementation, with u,v € {—1,0} and z',¢y' € {0,1}.
Note that for theoretical analysis, the recursion step is replaced by:
F(z,y;u,v;k) = f(z,y;k)+a max Flz—u—2'y—v—yiu v k—1) (4.1)
(' y')€eQ
However, this only changes F' by a scale factor, and since both signal as well as noise would

be scaled equally, SNR analysis does not change.

4.2 False alarm and mis-detection probabilities

Probability of false alarms P4 is the probability that there is at least one state exceeding
the threshold V7 out of p velocity states at the final output time K, for the pixel where there
is no signal in its neighborhood - i.e., hypothesis Hy.

Pra(z,y) = Pr| max F(z,y;u,v; K) > Vr|Hg| =1 — [Py (V7)) (4.2)

(u,v)eP

where Py x(V7) denotes the probability of F' for hypothesis Hy at time K, being less than
or equal to the threshold V7.

Probability of mis-detection P,;p is the probability that there is no output with correct
velocity (u,v) exceeding the threshold at time K, within a neighborhood R of size r + 1,
where one cell contains signal — i.e., hypothesis H, — and the other r cells are noise. This
allows for some tolerance in the location of target. For example, a 5 x 5 neighborhood
corresponding to r + 1 = 25 gives a tolerance of £2 pixels in the location of the target. On
the other hand, a 1 x 1 neighborhood consisting of only the target position corresponds to
r+1=1or r =0 giving no tolerance for the target position.

PMD(‘ra y;uﬁv) = Pr maxRF(:c - ‘rlay - y'§U>U§K) S ‘YT’HI
z'y'c

= Pl,K(VT)[Po,K(‘“rT)]T (4'3)

where P, x(V7) denotes the probability of F' for hypothesis H; at time K being less than or
equal to the threshold V7.

4.3 Normal approximations

For an analytic solution of the performance of the dynamic programming algorithm, the

distributions of the intermediate outputs can be approximated using normal approximations.

44

Table 4.1: Values of y, and 03 for a number of values of g.

2

q .“*q Uq

110 1

4 1.029 | 0.491

9| 1.485 | 0.3574
25 | 1.965 | 0.2585
49 | 2.241 | 0.2168

Consider g independent standard normal variables w; ~ N(0,1). The cumulative distribution

function (CDF) of the maximum of these variables is given by:

P(w)=Pr

max w; < ur} =[I Priw: < w] = [®(w)]? (4.4)

where ®(-) is the CDF of a standard normal variable. The probability density function
(PDF) is the derivative of the CDF given by:

p(w) = q[®(w)]* 'G(w) (4.5)

where G(-) is the standard normal PDF.

This distribution of maximum of ¢ standard normal variables can be approximated as

2
q

actual distribution. These are computed using numerical integration, and are tabulated in

a normal distribution N(y,,07), where y, and 03 denote the mean and the variance of the

Table 4.1 for different values of ¢.
For general normal variables z; ~ N(p,0?), one can substitute: z; = pu + ow,; where w;
are standard normal variables. The maximum of z; is approximately normally distributed

with mean and variance given by:

Elmaxz] = p+oEmaxu;] = p+op,
Vimax 2] = o’V[maxu,] = 0’0} (4.6)

Let the input at any time & be normally distributed, both in absence and presence of the

target, so that:
f(z,y:k|Ho) ~ N(pun, 0p) , fl.y: k[Hy) ~ N(ps,07) (4.7)

45

Then, the distributions of the output F at time k£ will also be approzimately normally dis-
tributed so that

F(z,y;u,v; k|Ho) =~ N(My, Sg,k) , Flx,y;u vy k| Hy) ~ N(M, Sf’k) (4.8)

where the M and S parameters are calculated below.

4.4 False alarm analysis
For noise pixels, we have:

F(z,y;u,v;0) = 0
F(x,yu,v;k) = f(x,y;k)-i—a(mangF(:r—u—x',y—zr—y';u,v;k— 1)
AR TS
~ N(Mok, Sgs) (4.9)

Using equation (4.6), the mean and variance parameters at time k can be recursively ex-

pressed as:

Moo =0, Myp = pn+a(Myg—1+ 1650k-1)

2 2 2 2 2.2
Soo=0,85, = o, +a"0;5,_,
(4.10)
Solving these recursive equations yields expressions for mean and variance at time A’:
1 — 2K 52K
Sok = Onr—5s
' 1 - a?0?
1 — aK K-1
Mo = 1~ a Hn + Qg Z (a"So,k-i-1)
i=0
(4.11)
To get approximate closed-form expressions for My , one can write Sy as:
1 — a2Kg2K o
Sor =0 4~ 2 1 — vaX o2k (4.12)
"\ 1-a?? 11— a2g? (¢)

where <, is dependent on k but always lies between 0 and 1. Using 7, = 1/2 is equivalent

to using the first order term of binomial expansion, whereas v, = 0 corresponds to assuming

46

that S remains approximately constant with &, which is justifiable, since 03 is quite small.

Accordingly, we have:

1—aX Rt
Myx = [— o Hn T Qg Y (0¥Son_k-1)
- k=0
1 —af QO 1—ah .1 —(ac?)¥
= My + HqOn - 7‘(15*1(—‘1) (4.13)
1 —« 1— (,,2(;‘5 1—a 1- (wj

where is a function of all v, and also lies between 0 and 1. Values of v = 0 and v = 1/2 can
be used as the zero order and first order approximations, respectively. For K — oo, a0 # 1

such that o™ <1 (also, 02% <« 1), we have:

2
2 . Ty
Son = 1 - o?of
1 (Y flqOq
Myg = — |y + 00— (4.14)
-« { 1 — a20?

For the case when o = 1, the sum Y% ; o changes from (1 — a%)/(1 — a) to K. Hence, the

expressions become:

Stk = alT%
’ 1-o]
2\K
= HqOn - 1 - (Oq) -
Myg = Kpp+ ——— |K —v—-1— 4.1
0,K Un + 1_05[\ y l—ag (4.15)
Finally, the probability of false alarms is:
Ppy=1-[Po (V7)) (4.16)
giving
- 1/ "7 — J"[O K -
Pox(Vr)= (1= Ppa) P =@ | —5—— (4.17)
So.k

where ®(-) denotes the CDF of a standard normal variable. Hence, the threshold V7 can be

expressed in terms of the mean My ., variance Sy, and the false alarm probability Pr 4 as:
Vi = Mow + Sox® ' [(1 = Pea)'/?) = Mo g + So xbop (4.18)
where

Gop =P '[(1 = Pra)'/") ~ &' [1 — Ppa/p] (4.19)

47

4.5 Missed detection analysis
The probability of mis-detection is given hy:
Pyp = P (V) [Poc (V)" < Py (Vr) (4.20)

Substituting the expression of Vi in terms of false alarm rate, we have:

Pup = (1 — Pey)PPy (V) (4.21)
giving
. Pp Vr — Mk
Pik(Vr) = -—F—7 =0 ——— 4.22
l,[\(T) (1 _ PFA)T/p (Sl,]\" ()
Hence,
r — P‘
‘T — 1‘7\[1’[\" + SLK(I) ! l:z#:ly/p:l - AILK - SI,K (fbl,p (423)
where
_ Prp _ Pyp _
I P S I i ~ &-171 Y
o= ¢ [(1 — PFA)T/IJ} =? [1 (1- PFA)T/”] =@ 1= Pl (4.24)

since usually, Pr4 < 1.
Approximations of M) x and S} .. are obtained considering the exceeding of threshold
only due to the signal part, and not due to the noise part. Also, it is assumed that the target

occupies a single pixel. In such a case, we have:
F(x,y;u,vik) >~ f(a,ys k) + aF (v, y;u, vk — 1) = N(My g, 512,1«) (4.25)
It can be easily shown that:

1—af 1 —a?X
M, g ~ N Hs 512‘,\» ~ 2

o (4.26)

1—a2 °

4.6 Calculation of required SNR

To calculate the SNR required for detection at particular rates of false alarms and mis-

detections, equations (4.18) and (4.23) are combined to give:

My g — My r = So.x ®op+ Si.k D1 (4.27)

48

Using expressions for S i, My k. Six. and M, k. and assuming u, = 0, j, = p, and

on = 05 = 0, equation (4.27) becomes:

1—a® oy, 1—ak ko1 —afal¥
- —yahT 4
l-a J1—a2o [1-a 1 - ao?

(4.28)
(4.29)
2K 2K
1 Hq v 1-o0 1 |1-0 1
SNRy ==~ —— 11— —- + = + — 4.30
"o \/1—_;3[R 1_031 K\ 1-oz 22+ g ®e 1430
For K — 00, # 1 such that o® « 1:
I Qig 1l -« 1l -«
SNRp ==~ , — 4.31
L 1 - a%o; 1- a2 Gop ¥ 1+a¢1’p (4.31)
The above expressions of SN Ry can be written in the form:
SANRT =4 + B Qb()’p + C @1]) (—132)

where A, B, and C depend on A, ¢, and a. The terms B and C decrease with K, improving
the algorithm performance as K increases. However, the term A increases with K. putting
a lower bound on the required SNR, thus limiting the performance. It can be shown that
this bound increases with ¢, and hence a lowest possible value of ¢ should be used. This is
intuitively explained, since a maximum is taken over ¢ noise pixels and it is more likely to

be a false alarm when ¢ is large.

4.7 Temporal averaging and single frame thresholding

as special cases

Recursive temporal averaging algorithm can be considered as a special case of dvnamic

programming with p = ¢ = 1. for which g, = 0 and 02 = 1. Hence, the threshold SNR for

49

recursive temporal averaging becomes:

. Jt l-—a 14+ak
SNRp = — ~ ' g 1.
T \/1 +a 1—ah (901 + 1] (4:33)

This expression can also be obtained by using the recursive temporal averaging equations:
F(z,y;0) =0, F(x,y:k) = f(r,y: k) + aF(x,y;k — 1) (4.34)
Also, for a = 1, this expression takes the limit:

SNRy = (4.35)

1 ‘
\/7 (o1 + @1,1]

The same result would be obtained by using v = 1 in original equations. For K — oc, v # 1

such that o® <« 1,
1—«

SNRy = (001 + &1.1] (4.36)

1+
For single frame thresholding (K" = 1 or a = 0), the threshold SNR reduces to ¢y + ¢1 ;.
Note that the first term from the dvnamic programming algorithm disappears in these

expressions, and there is no lower limit to the performance if o = 1.

4.8 Theoretical performance plots

This section describes the behavior of the required signal to noise ratio SN Ry for different
values of parameters. It should be noted that lower required SNR means better performance.
Figure 4.1 (a) shows plots of SN R+ against A" for dynamic programming algorithm with p =
q = 4 and a number of values of &. The false alarm rate is 2 x 107® (0.02 per simulation for a
1 mega-pixel image), and the mis-detection rate is 0.001. It can be seen that SN Ry decreases
with increase in K, but saturates at a certain point depending on a. Figure 4.1 (b) shows the
corresponding plot for p = ¢ =1 - i.e., recursive temporal averaging. Figures 4.1 (¢) and (d)
show the plots of SN Ry against A" with o = 1 and «« = 15/16, respectively, for a number of
values of p and ¢. It is observed that SN Ry increases with ¢ as expected. The SN Ry also
increases slightly with p, but the plots cannot show the change. Except in the case of & = 1
and p =¢ =1 - ie., temporal averaging - the SN Ry saturates at some minimum value as

K — oc.

p=q=4,FA~2e-08.MD=0.001

Z10°
w
— a=1
|- - a=63/64
I - - a=15/16
o a=3/4
10'= = s
10° 10 10° 10
3

—= g=1,p=1: TempAvg
- - g=4,p=4: DProg
- - g=9,p=9: DProg (larger masks)
10’ 10
13

(c)

10°

p=q=1,FA=2e-08 MD=0.001

— a=1

- - o=83/84

- - u=15/16
u=34

(b)

— g=1,p=1: TempAvg
- - gq=4,p=4: DProg

- - q=9.p=9: DProg (larger masks)

10° 10
K

(d)

Figure 4.1: Plots of SNRy against A for: (a) p = ¢ = 4 (dynamic programming) and

number of « values. (b) p = ¢ = 1 (temporal averaging) and number of a values. (¢) a =1

and number of p and ¢ values. (d) @ = 15/16 and number of p and ¢ values. The parameters

used are: FA=2x10"% MD = 0.001.

Table 4.2: Parameters used for calculating the theoretical performance of algorithms.

Parameter | Dynamic prog | Single frame | Temp. Avg. (stat)
FA 2 x 1078 /pizel = 0.02/image
MD 0.001/pizxel
o 15/16
K 32 1 32
q 4 — 1

Table 4.3: Comparison of theoretical performance of the algorithms with observed perfor-

mance on 2 x 2 targets.

Algorithm Theoretical SNR | Observed SNR
Dynamic Prog 2.4540 2.04
Single frame 8.5811 8.17
Temp. Avg. (stat.) 1.7507 1.65

4.9 Comparison between theoretical and observed per-
formance

The parameters used in the calculation of theoretical performance of the algorithms for 2 x 2
targets are shown in Table 4.2. The calculated and the observed SNR threshold for these
parameters for various algorithms are shown in Table 4.3.

One can observe that the actual performance of the algorithm for 2 x 2 targets is slightly
better than the theoretical performance for most of the algorithms. The reason for this is,
that a 2 x 2 target occupies at least one pixel completely, and a few other pixels partially.
Hence, its performance should be slightly greater than the calculated performance in which
one assumes that the target occupies exactly one pixel.

To correct this problem, point targets were used in place of 2 x 2 targets. The experiments
in Chapter 3 were repeated using point targets. The comparison between the calculated and

observed SNR for a number of false alarm and mis-detection rates are shown in Table 4.4.

32

Table 4.4: Comparison of theoretical performance of the algorithms with observed perfor-
mance on point targets for a number of different values of false alarm (FA) and mis-detection
(MD) rates.

Algorithm FA rate MD rate | Theo. SNR | Obs. SNR
Dynamic Prog. | 2 x 1078=0.02/simul | 0.001 2.4540 2.7172
Dynamic Prog. 107%=1/simul 0.01 2.2313 2.2928
Dynamic Prog. 107%=1/simul 0.1 2.0181 1.9862
Dynamic Prog. 107*=100/simul 0.1 1.9259 1.8401

Temp. Avg. |2 x 1078=0.02/simul | 0.001 1.7507 1.7355

Temp Avg. 1075=1/simul 0.01 1.4444 1.4307

Temp Avg. 107%=1/simul 0.1 1.2313 1.2345

It can be seen that the calculated and observed SNR rates agree very well in most cases.
However, in the case of extremely low false alarm and mis-detection rates, the observed SNR
is greater than the calculated SNR for the dvnamic programming algorithm. The reason for

this is the normal approximation used for the distribution of resulting output.

4.10 Effect of approximations

Approximations were used to derive the closed form expressions. In this section, the effects

of these approximations are described.

Normal approximation

Normal approximation was used for maximum of ¢ normal variables. The comparison of
the probability density, and the complementary cumulative distribution functions of the
maximum of ¢ = 4 standard normal variables, and their normal approximation are shown in
Figure 4.2. It can be seen that the approximation is good in the interior, where probability
density is high, but is inaccurate in the tails, where the probability density is low.

Due to the difference in these distributions, the probability of false alarms is underesti-
mated. In fact, to get the actual value of the false alarm rate, the function corresponding

to the actual cumulative distribution of the output F should be used in place of cumulative

Figure 4.2: Probability distributions of normal approximations: (a) Probability density
function (p(z) and p,(r)) (b) Complementary cumulative distribution (Q(x) and Q,(r))
against z of the maximum of ¢ = 4 standard normal variables (solid line) and the normal

approximation having same mean and variance.

normal distribution. But this distribution is difficult to obtain in closed form.

To get an idea of the difference between the actual distribution and the normal approxi-
mation, consider the function corresponding to the complementary cumulative distribution
Q(x) = Pr[X > z] of the maximum of ¢ = 4 normal variables as shown in Figure 4.2.
For Q(z) = 1078, we get x = 5.85, whereas for normal distribution the corresponding
Qn(z) = 1078 gives x = 4.95. The difference is around 18 % but is smaller for smaller values
of x.

At each step of the recursion, maximum of ¢ instances of F' at time k£ — 1 are taken and
added to the input f at time k to obtain the output F at time k. Hence, the distribution
of the output F at each time should be a better approximation of normal distribution than
Q(+), since a normal variable (f) is added to the maximum term for obtaining the output F.
Also, since the normal approximation for F'is good in the interior, the mean and variance
of maximum of ¢ instances of F’ will be close to what is computed assuming the normal
distribution. Hence, the mean and variance calculations are not affected much.

Furthermore, it is observed that the threshold SNR changes are small even for large
changes in false alarm and mis-detection rates. In any case. one would not directly use the
false alarm and mis-detection rates during the application of the algorithm, but estimate

these dynamically using the output from the algorithm.

Approximation in false alarm estimation

Another approximation was performed while computing the mean value My g of the noise
output, used in false alarm estimation. For equation (4.12), v actually depends on k, which
makes it impossible to get an exact analytical expression. It was assumed that v is fixed
and approximately equal to 1/2, corresponding to a first order approximation. However, it
is observed that the value of My does not change much with v even for the extremes of

v =0 or v = 1. Hence, the approximation is reliable.

Approximation in mis-detection estimation

In the case of mis-detections, the output of the algorithin at a target point is assumed to
be solely due to the target. without the effect of noise. The noise can add or subtract the
target intensity. However, since maximum is taken over g pixels at every stage, bias is likely

towards adding. Hence, the mis-detections are likely to be less than what are estimated.

Chapter 5

A Special Approach for Hazard

Detection

It is well known in the pilots’ community, that an object on a collision or near-collision course
remains stationary or nearly stationary in its 2-D image view [14]. The closest distance that
an aircraft would approach another before moving away from it, is known as the distance
of passage, and the time to reach that point is known as the time to passage, or time to
‘collision’. For ensuring safety, the distance of passage should be larger than a certain limit;
and objects with a smaller distance of passage should be detected before the time to collision
becomes too small. It can be shown that the rate of translation of the object in the image
is proportional to the distance of passage. Using this property, the rate of image translation
can be used to separate hazardous objects from clutter, since the former have a smaller rate
of translation.

Another useful property which can be used to discriminate hazardous objects from clutter
is the rate of image expansion, which is approximately inversely proportional to the time
to collision of the object. Nelson and Aloimonos [15] use the image expansion in terms of
the flow field divergence to estimate the time to collision, for separating obstacles. Francois
and Bouthemy [7] separate the image motion into components of divergence, rotation, and
deformation. Ancona and Poggio [1] use 1-D correlation to estimate optical flow for a time-
to-crash detector. Baram and Barniv [3] rely on object texture to extract information on
local expansion. Instead of estimating a numerical depth value, an object is classified as
‘safe’ or ‘dangerous’ using a pattern recognition approach.

Most of these methods are useful for objects of larger sizes. However, in this case, the

object sizes can be very small, even sub-pixel, along with very small rates of expansion.

26

Hence, a feature based approach was used in this work, where features were tracked, and
their expansion estimated over a large number of frames.

This chapter describes the conditions under which the rates of image translation and
expansion can be used to separate an object on collision course from the ground clutter.
Methods to estimate the image translation and expansion are proposed and tested on real

image sequences obtained from a camera mounted on an aircraft.

5.1 Scene geometry

Consider an object approaching towards the aircraft with a relative velocity of V" as shown
in Figure 5.1 (a). Let p be the distance of passage - i.e., the closest distance that the object
approaches the camera — and ¢ be the angle between the line of sight of the target and the
relative velocity vector V'. Let 7 denote the time to passage (or collision) which is the time
the object takes to reach the distance of passage. The object distance is r. whereas distance

that the object travels until it reaches the point of passage P is z.

5.2 Detection using translation

As the object moves, the angle ¢ as well as distances r and z change, but the distance of
passage p is constant. The rate of angular translation of an object in the image is T = .
The pixel translation is approximately given by multiplying the angular translation by the

focal length. By geometry of Figure 5.1 (a), we have:
z=pcoto (5.1)
To find the rate of translation ¢, this expression is differentiated to get:

26)0 (5.2)

= —p(esce
The magnitude of the relative velocity V7 is the rate of decrease of z, given by:
Vi=—:=p(r/p)io (5.3)

Also, the time of passage is given hy:

T==z/V =rcose/V (5.4)

o7

C (Camera)

V (relative)

T (Target)

Y Po=Tg5in(0+ o)

(a)
Vo
C (Camera) o
I \‘ e
\\\ T, =d/cos(®)
ho !l
J Earth (+ hy,)
E ! 9 B (Background)
D d(hy.0) a .-

\ e
v -

-7 zg=r1gc0s (0 +a)

(b)

Figure 5.1: Geometry of (a) target (b) background moving relative to the camera.

58

From equations (5.3) and (5.4), the rate of target translation is given by:

pV" pcoso
r2 "

T=¢= (5.5)

Thus, the rate of image translation is proportional to the distance of passage, and the
objects on a collision course are likely to have a smaller rate of translation compared to other
objects. However, this rate is also dependent on the target distance, and a nearer target
moves faster in the image than a farther target with the same distance of passage. If S,,;, 1s
the smallest visible dimension that an object can have, the corresponding size in the image
is given by:

5> Smin = Smin/T (5.6)

Hence, from equation (5.5), one can write:

T < PCOS @ <P

s TSmin TSmin

(5.7)

Hence, an object on a near collision course, having sufficient time before imminent collision
has the ratio of its image motion to its image size bounded by the above pre-computable
limit. For example, if the distance of passage of p = 150 m (500 ft) is allowed, and an object
of smallest size of Simi, = 1.2m (4 ft) is to be detected before 7 = 25 seconds (750 frames).
then this ratio becomes 1/6 1i.e., the image motion per frame is at the most 1/6™ of the
image size of the object. However, in actual practice, a larger range of velocities should be
checked, to have a safety margin.

It should be noted that the above relationship is valid only if the aircraft does not rotate
or vibrate around its own axes. If there is rotation, it should be compensated by using the
data from the aircraft navigation system. In the absence of this data, it may be possible to
use image features due to clutter (if available) to perform the compensation, by modeling
their image motion due to camera rotation.

If this compensation is successful, the velocity to size ratio of the object would be
bounded. By reducing the image resolution to an appropriate level, the image velocity
of the object would also be restricted. Hence, using pyramid construction, target detection
can be performed at a number of resolutions, and the suitable resolution selected. This also
leads to spatio-temporal integration of the image data and the amplification of SNR which
could enable detection of sub-pixel or low-contrast objects in uniform background. such as
clear or overcast sky.

The relationship between image motion and the distance of passage can be used to remove

the clutter which is not on collision course and thus expected to have a large image motion.

99

However, the image motion is inversely proportional to the distance of the object from the
camera. Thus, if clutter is at a large distance, it too could have a small image motion. The
conditions under which an object on the collision course can be distinguished from ground
clutter at the same image position are derived bhelow.

Let 7y and py denote the background distance, and the minimum distance of approach for
the background, respectively, as shown in Figure 5.1 (b). The relative velocity 1 between the
camera and the background is actually the magnitude of the camera velocity, By substituting

these parameters in equation (5.5), the rate of background translation can be written as:
Ty = —— (5.8)

Let hg = h, — hy denote the difference between the camera altitude h. and the background
altitude h,. Also, the angle of the camera velocity above the horizontal (not horizon) is «.

From Figure 5.1 (b), we have:

ro = dsect (5.9)
po = rosin(f+ a) (5.10)

Here, d is a function of the relative height hy and the angle 6. If the earth were flat (or 6 is
large), refraction of light is negligible. and the terrain is smooth, the dotted line corresponding

to d would coincide with the surface of the earth, and we would have
d = hgcot8

However, if we express:

(1(}1,[), 9) = hr() cot Hf(h(], 0) (511)

then the effects of the earth’s curvature and refraction of light ray would be incorporated
in the function f. If these factors can be neglected, then f(hg,6) ~ 1. The expression for
f using the curvature of the earth is derived in Section 5.4. Also, using equation (5.9), one
can write:

ro = hocscOf(hy,0) (5.12)

Substituting equations (5.10) and (5.12) in (5.8), the rate of background translation 7Ty is

given by:
Vosin(f+a) Visin(6 + a)siné
Ty a ho f (ho. 6)

If the hazard is to be discriminated from the background in the same line of sight, the

rate of translation of the hazard must be much smaller than that of the background - i.e.,

60

T < ny'Ty with n, > 1, having a larger value for greater discriminating power. Using

equations (5.5) and (5.13), we have:

pCos ¢ < Vo sin(@ + «) sin @

o = hof(hg, 8) (5.14)
Hence, the object distance r should be larger than the following expression:
o mphof(ho.0)cos¢ _ npDf (o 6)VT= G 65.15)
— 7Vysin(f + o) sin @ sin(f + «)sin 6 '
with }
D= ;%. Q= ? =sing, coso=4/1-Q?~1 (for p < r) (5.16)
Hence, # should satisfy:
sin(f + a)sinf > n,DQ\1 = Q% f(hg, 6) (5.17)
Also, using T < n; 'T}, with equations (5.5) and (5.13), one can write:
PCOS O < Vosin(f + «) (5.18)
" ro

Since the object distance cannot be greater than the background distance in the line of sight,

r < ry. Hence, one can also write:

‘mpﬂmaro>‘mpv1~6f

sin(f > — 5.
sin(f + o) > i _ (5.19)

For p <« r or < 1, this condition is approximately independent of r. It can be said that
for detection to be possible at all for a particular and «, the above condition is necessary
irrespective of the target distance r. provided it is sufficiently large.

If the curvature of the earth and the refraction of light can be neglected, then f ~ 1. The
necessary condition in equation (5.19) does not simplifv. However, equation (5.17) reduces

to:
sin(f + o) sinf > 13, DO/ 1 — Q? (5.20)

On solving for 8, this vields:

1
6 > 5 [cos‘l (—Qr)tDQ\/l — (Q? + cos 0) — Oz] (5.21)

If o = 0, the solution for € is simpler:

ezﬁm1¢mDQM1—(? (5.22)

61

For example, if we have:
p=150m, 7 =255, V5 =100m/s, hy =1km, ¢ =0, n, = 2.5 (5.23)

For these values D = 0.267, and from equation (5.19) the necessary condition is 8 > 5.7°.
This condition corresponds to the target being at the same position as the background,
which is 7 = 79 = 10km =~ 5.4 nmi or @ = 0.015, using equation (5.12). However, if the
target is nearer, the condition on # is determined by equation (5.17) or (5.20). For example,
if a hazard should be detected at r = 5 km ~ 2.7nmi or () = 0.03, one would really need

0 > 8.1°. The required # increases as r decreases.

5.3 Detection using expansion

Another discriminating feature between objects on collision course, and objects much farther,
is the time to collision. It is well known that the rate of image expansion, - i.e., the increase
of the image size of an object - is inversely proportional to the time to collision.

In Figure 5.1 (a), as the object comes closer to the camera along the line of z, its size in
the image will become larger. The rate of this expansion of any object is defined as the ratio
of the rate of increase in its size to the size at that time. - ie., E = §/s - where s is the
size of the object in the image. Since s = S/r where S is the object size which is assumed
constant, we have § = —S7/r?, and

E=—7/r (5.24)

By geometry of Figure 5.1 (a),
2

rt =24 p? (5.25)
To find the rate of expansion. this expression is differentiated to vield:

2rf = 225 = -2V (5.26)

Hence, rate of target expansion is given by:

E:_l‘:z_g:l'cosq‘):cos?qb (5.27)
A r T
where the time to passage is:
T=z/V =rcos¢/V (5.28)

For 7 = 255 = 750 frames, the ratio is 0.13 % per frame, which is a very small magnitude.

This small expansion can be measured by tracking it over a large number of frames.

62

For estimating the rate of expansion of the background, the corresponding parameters

for the background are substituted in equation (5.27) to give:

Ey="% (5.29)

Using 2y = rg cos(f + «) with equations (5.9) and (5.11), the rate of background expansion

can be written as:

_ Vocos(@+) _ Tocos(f+a)cosf Vhcos(f +a)sind (5.30)
= ro - d — hof(ho.8) "

If reliable discrimination of the hazard from the background in the same line of sight

Eq

is required, the rate of expansion of the hazard must be much larger than that of the
background, - i.e.. E > n.E, with 7, > 1, having a large value for greater discriminating

power. Using equations (5.27) and (5.30), one needs:

cos? ¢ - Vo cos(f + o) sinf (5.31)
hof (o' 0)
o ho f(ho, 8 2¢
cos(f +) sinf < of (o, ‘),COS _ 7. ' D(1 = Q%) f(ho.0) (5.32)
NeT Vo

where D and @Q are given by equation (5.16). For the case of f ~ 1, the equation (5.32)
reduces to:
cos(8 + a)sinf < 7' D(1 — Q%) (5.33)

Explicit solution for # is then given by:
1
6.< 5 [sin”' (207" D(1 - Q%) +sina) o (5.34)

For the conditions in equation (5.23), we need § < 6.2° for reliable detection using expansion.

It should be noted that the expansion in image size can also be caused by the rotation of
the target aircraft in a way which would expose a larger area to the camera. However, this
false expansion takes place only in the direction perpendicular to the axis of rotation of the
target aircraft, whereas the expansion due to a potential collision would take place uniformly
in all directions. Also, the target expansion will cease after the aircraft fullv rotates to a
position where maximum area is exposed to the camera. It may be possible to use these
properties to discriminate between the false expansion and the expansion due to a collision

course.

63

(OsR+ ho)

R
- R (siny, cosy)

d

R=R,+h, Y

Figure 5.2: Geometry of earth’s curvature: The coordinates used are with respect to earth’s

center.

5.4 Effect of horizon

In this section, function describing the effect of the curvature of the earth is calculated,
neglecting the effects of refraction. Figure 5.2 shows the geometry of the earth’s curvature.

The coordinates used are with respect to earth’s center. Using this, we have:
d = Rsinv, dtanf = hy + R(1 — cosv) ~ hy + d*/(2R) (5.35)

where R = Ry + hy, hy is the altitude of the background, Ry is the radius of earth. and ~ is

the angle subtended on the center of the earth by the triangle. Solving this equation yields:

d= R [tand = \/tan?0 — 2ho/] (5.36)

The correct solution is the smaller value of d, since the larger value represents the other

intersection of the line of sight with the earth.

2hg
tan§ + y/tan20 — 2ho/R

(5.37)

d=R [tanG - \/tan29 - Qh,o/]?] =

64

By substituting in equation (5.11), we have:

2
ho,0) = 3
. 8) 1+ \/1 — 2ho/(R tan?6) (5:38)

If 6 ~ 7/2, or Rislarge, his small, then f ~ 1, - i.c., the earth’s curvature can be neglected.
However, where the line of sight just touches the earth - i.e., at the horizon — the discriminant

under the square root is zero, then f = 2 and the corresponding 6 is:

0, = tan™"' \/2hy/R (5.39)

Any value of # smaller than this value corresponds to the line of sight not touching the earth

— i.e., background above the horizon.

5.5 Behavior of translation and expansion

Figure 5.3 shows the variation of the required # with the horizontal, for the possibility of
detection using translation and expansion, against various parameters. Effect of horizon
was neglected since it was observed that it does not affect the plots to a significant extent.
The minimum € for detection using translation, which is shown by dashed line, whereas the
maximum 8 for detection using expansion is shown by dotted line. However, the minimum
@ criterion is only the necessary criterion. For actual discrimination using translation for an
object at a given distance, a larger # is required. The other curves show the required 6 for
detection using translation for various object distances in meters, and are enveloped by the
dashed line curve.

Most of the information in these curves can be condensed using the parameter D =
ho/(7Vh). Figure 5.4 (a) shows the contours of same D for different values of V{ and hg for
T = 25 5. Plots of required # for translation and expansion using a number of values of the
target distance r in km, for the distance of passage p = 150 m are shown in Figure 5.4 (b).

However, the necessary criterion for translation cannot be expressed using these plots.

5.6 Estimation of translation and expansion

To reduce the computational complexity of estimating the translation and expansion, a
feature-based approach was used. A morphological filter [6] which subtracts the opening
and closing of the image from the original image was used to detect positive and negative

features, corresponding to light and dark objects, respectively.

65

+
\\ x OO 2 x *
*® o *
\ .
PN x ° 25 ° * .
% o + .
' * % o + -
\ x
N M o © - + .
x o .
- % " ° 20 5° « R .
"+ y o x + "
1S3 * o o x + » i
e, x ° o x Wt .
15 AR x N 15 o° x + o* ®
N ta " %4 o x + . 2<
N te ' CIS °® o I o a
N s x Oy o° M ot - o
= N te Ag = A * + ' -a
2w « T, o . X P «* o Bl
v, iy £ x ot * L0®
S ty, *x X + * =3
x - . a
. [ke L. et T [L AU -1-1L A
5 nmy, T, x4 B -
Tilreaea,,, el
T ottt erevangyyy
SEUSEEREREEE L S
0 B 0 -
=] o 300 o © 300
x x 1000 u x 1000
L. + 3000 - + 3000
e e oo s o« 000 |
a o 30000 o 2 230000 i
1 0 - J
10 10 107 ©0° 10*
vo o
Y S - s - ——
[} H — < - +
L=} ©
o J . x o,
25 °© ' L a
o x ; I - o
o M , : N » l
° x B x °
° . ‘ |) x °]
20 a x x
o x v 20 AN x o,
o° o i S o
o® x P y . " °°o
e » W s ST M °o
x + x o
« N . ‘. x o4
x s - x o
3 0 -’.' o ‘ ° AREN R °¢
1 x + - 3 - >
270 . LerT , L . teal o 1

100 1000

- s 10000

e+ =0

10000

©
o
«
r
o
B
3
t
o
£
[
L. B

ias+xo0

Figure 5.3: Variation of the required § with the horizontal, for the possibility of detection
using translation and expansion, against a number of parameters: (a) Camera velocity: 15,
(b) Relative height between camera and background: hg, (¢) Distance of passage: p (d) Time
of passage (or collision): 7. Default values of the parameters (except when they vary) are:
o =1km/s, hg = 1km, p = 150m, and 7 = 25, and 7 = 7, = 2.5. The minimum @ for
detection using translation is shown by dashed line, whereas the maximum # for detection
using expansion is shown by dotted line. The other curves show the required 8 for translation

for various object distances in meters.

66

PR a .
i a” - +
1@ © 003 g: .. "
oo a® . o
I« + 03 o . R 10
whie & 4c . R
o @ a3 |g® . +
— . «
- .
a - -
o . .
o . B
o . +
o . +
o . .
o0 .t L
- - g .
. . ° 20
2 .” - o° £
P +* 0°
. + °
0 e Lt o
+ o
r + ° 1
+ °°
Wt &© {
+ 0°
7 o 0
« o
. o
°
x 0
x o0
°©
100 [L
10° 0 10 10 10 10 10
o o

Figure 5.4: Plots for detection using translation and expansion: (a) Plot showing the contours
of same D for different values of 1, and hy for 7 = 25 ¢ (b) Plots of 6 required for detection
using translation are shown with various svinbols for a number of values of the target distance
r in km, for the distance of passage p = 150m. Plot of the 8 required for detection using

expansion is shown with a dashed line.

To estimate the translation of the features over a number of frames. they were tracked
over a number of frames. In case of navigation system data being available, the position of the
features were compensated before performing the tracking. A nearest neighbor approach was
used to determine the corresponding feature in the next frame, and the smoothed estimates of
the feature position and velocity in each frame were obtained using Kalman filter approach.
This procedure is similar to the one described in Chapter 7 used for detecting targets crossing
the aircraft.

For detecting expansion, a 15 x 15 window around each feature was explored. The
sub-image corresponding to the window was thresholded, and the connected component
containing the center of the window was found. All the pixels in the sub-image that did
not belong to the component were set to zero. To estimate the size of the component, the
sub-image was convolved with a number of smoothing masks. These masks perform matched
filtering with a object templates corresponding a number of different sizes. The maximum
output from all these masks was considered as the measure of target strength. The rate of
expansion was measured in terms of increase of the target strength, tracked over a number of
frames. The target strength was plotted against the frame number, and the rate of expansion

was estimated by applving least squares to the logarithm of the target strength.

67

5.7 Results

The estimation of translation and expansion was performed on a sequence of images captured
from an analog camera in which the target aircraft is approaching the camera. Figure 5.5 (a)
shows a typical frame from the sequence. Figure 5.5 (b) and (c) show the target track in
the original and the motion compensated images, respectively. Figure 5.5 (d) shows the plot
of the estimated target size against the frame number. Corresponding plots for two clutter
tracks are shown in Figures 5.6 and 5.7. It can be seen that the target expansion is the
large for the target track, and small for the clutter tracks. On the other hand, the rate of
target translation is small for the target track and large for the clutter tracks. Figure 5.8
shows the significant tracks before and after motion compensation. A scatter plot of the
feature expansion against translation for these tracks, including the target track is shown in
Figure 5.9. The rate of translation is measured in terms of the displacement magnitude of
the compensated features in 100 frames, whereas the rate of expansion is measured in terms
of the increase in the logarithm (to base 10) of the target strength in 100 frames. It is seen
that the target has a large rate of expansion and a small rate of translation and is located

in the upper left corner of the scatter plot.

68

50

100 Q

150

TIS 194,11

() (d)

Figure 5.5: Translation and expansion for target track: (a) Sample image from the last
frame. (b) Target track (c¢) Target track after compensation. Rate of translation is small
for target track. (d) Plot of expansion against frame number. Rate of expansion is large for

target track.

69

0 ‘/%

150

TIS 194717

o
40
sol
sr
£
100 g
- £
¥ 30
5 J
H] L
150 Pl Ju
201
2001
15l . N O
n 3515 352 525 as3 3535 354 3.545 355 3555 356 A565
] 50 100 150 200 250 300 rame number T

(c) (d)

Figure 5.6: Translation and expansion for clutter track: (a) Sample image from the last
frame. (b) Target track (c) Target track after compensation. Rate of translation is large for

clutter track. (d) Plot of expansion against frame number. Rate of expansion is small for

clutter track.

100

150

200+

TIS: 194,19

0 50 100 150 200 250 200
o 0
% ¢ |

i v"l | W),‘l %

150 : b [

sl .. U S S S S S |
3615 352 3525 353 3535 354 3545 355 3565 356 385
frame number 0t

(c) (d)

Figure 5.7: Translation and expansion for another clutter track: (a) Sample image from the
last frame. (b) Target track (c) Target track after compensation. Rate of translation is large

for clutter track. (d) Plot of expansion against frame number. Rate of expansion is sinall

for this clutter track.

100

150 -

200+

50}
[y
100}
‘—ws E!
- ®
sl 00 ® / A{ i{
!{é!’ Q{é{{ >
200} j")3 95 Oé?‘a
0 %0 100 150 200 250 300

(b)

Figure 5.8: Feature tracks (a) before, and (b) after rotation compensation: Target track

surrounded by a rectangle has a small translation after compensation.

72

expansion score
[=] o o o o
(=3 =3 E=3 (=3 (=3
N © & =) >
T T T T T
X
L L L L L

=)

=4
T
x
L

o

o
N
w
-~
o
-3
-
@
©
=3

translation score

Figure 5.9: Scatter plot of the feature expansion against translation: The rate of translation
is measured in terms of the displacement magnitude of the compensated features in 100
frames, whereas the rate of expansion is measured in terms of the increase in the logarithm
(to base 10) of the target strength in 100 frames. The target is marked as an encircled
asterisk, and is in upper left corner, having a small rate of translation and a large rate of

expansion.

73

Chapter 6
Algorithm Fusion

Each of the target detection algorithms has its own advantages and limitations. Hence,
a combination of these algorithms may be used in the ultimate design to overcome their
individual limitations while maximizing their advantages. This chapter describes a method
for combining the algorithms using statistical approach to optimize the performance in terms
of the mis-detection and false alarm rates. In particular, the pre-processing algorithms of
low-stop and morphological filters, described in Chapter 2 are combined. The performance
of the fused algorithm is compared with the original algorithms using the methodology

described in Chapter 3.

6.1 Combination of algorithms using a statistical ap-

proach

According to the Neyman Pearson criterion, the optimal Bayesian detector which minimizes
the rate of mis-detection for a particular rate of false alarms is obtained by thresholding the
joint likelihood ratio of the individual detector outputs, or some monotonic function of the
same. The threshold should be such that the desired false alarm rate is obtained.

Consider the joint likelihood ratio of the low-stop and the morphological filter. Let z =
(21, z2) be the 2-D vector denoting the outputs of the low-stop and the morphological filters,
respectively. Let p(z|H,, C) and p(z|H,;,C) denote the joint probability density functions
for the hypotheses denoting the absence and presence of a target, respectively, for clutter
level estimate C'. The likelihood ratio is then given by:
p(z|Hy, C)

Frol) = el)

(6.1)

74

6.2 Statistical behavior of low-stop and morphological
filters

In the following analysis, it is assumed that the input image pixels are described by the
sum of the signal 6, background level /3, and the camera noise v, which is modeled as an

uncorrelated Gaussian noise of zero mean and variance 7.

!

r=0+03+v (6.2)

If there is no clutter, the distributions of x in absence and presence of the target are given
by:
p(z|Ho) ~ N(3.7°), p(zlH)) ~ N(B + 3,1°) (6.3)

If clutter is present, the exact distributions would depend on the nature of the clutter.
Here, it is assumed that the presence of clutter changes the mean background level, and the
variance parameter of the noise, making these parameters space varving.

Low-stop filtering is performed by subtracting the low-pass filtered image, using a weighted
spatial average of the neighborhood, from the original image. This filter attempts to sub-
tract the background level. Since it is a linear filter, if the input is normally distributed, the

output z; will also be distributed as:
p(z|Ho) ~ N(0.07) p(z|Hy) ~ N(u, o) (6.4)

with
or= fm, =g (6.5)

where f; and ¢; are the amplification gains in the standard deviation and mean due to the
filter. It should be noted that the background level 3 is subtracted out by the filter.

Morphological filtering is performed by taking the difference between the original image
and its opening (positive targets) or closing (negative targets). Without loss of generality,
only positive targets are considered, which are detected by subtracting the opening from
the original image. This is expected to remove uniform background, as well as most of the
clutter.

To obtain a model for the distribution of the morphological filter and to verify the distri-
bution of low stop filter, simulations were performed. A large number of floating point images
containing Gaussian noise were generated. Low-stop and morphological filter were applied

to these images, and the histograms of the filter outputs were obtained. Figure 6.1 (a) shows

-3
ot

the histogram of the original image with Gaussian noise. Figure 6.1 (b) shows the histogram
of the low-stop filter output, which is normally distributed with zero mean, as expected.
The histogram of the morphological filter output is shown in Figure 6.1 (c¢). It can be seen
that the histogram resembles a normal distribution with a positive mean. However, since
the opening of an image is always less than or equal to the original image, the filter output
is always non-negative. Hence, the distribution is truncated on the negative side, and has an
impulse at zero in place of the negative values. For clarity, the distribution after removing
the impulse is shown in Figure 6.1 (d).

This distribution can be modeled by using a hvpothetical normally distributed variable
€m ~ N(im,02). The output z,, of the morphological filter can be expressed in terms of Em
as:

Zm = max (&, 0) (6.6)

It can be shown that the explicit distribution of z,, is given by:

Ul 2m 2~ im -
Pl Hy) = U)G(/)+5(z,,,)q>(—‘—) (6.7)

m U?I} Um

where u(-) is the unit step function, 4(-) is the Dirac impulse function, and G(-) and ®(-) are
the probability density and cumulative distribution functions of a standard normal variable,
respectively. It can be shown that the mean and variance of this distribution, which are

different from the parameters i, and o2, can be expressed as:

My, = flmq)(/[m/om) + UirlG(/lm/UnL)
2= 02O /om) — M (M — i) (6.8)

Hence, the parameters y,, and o, can be obtained from the observed values of m,, and
sZ, by using a numerical method. It can be shown that this procedure yields the maximum
likelihood estimates of the parameters. The parameters derived from the above simulations
are shown in Table 6.1.

To obtain the distribution in presence of a target, a number of simulated targets of
fixed amplitude were added to each of the images generated above. Morphological filter was
applied to these images, and a histogram of pixel values only at the target positions was
obtained. However, since the number of targets is not as large as the total number of pixels
in the image, the histogram is less reliable than in the case of absence of targets. These
experiments were repeated for various signal amplitudes and the sample mean and variance

of the outputs were computed. The sample means and variances were taken as the estimates

76

"
x 10 . . 258" S

50

% 10 20 30) 50 80 60

()

Figure 6.1: Statistics of low-stop and morphological filters: Histograms of: (a) Input image
with Gaussian noise. (b) Output of low-stop filter. (¢) Output of morphological filter. (d)

Output of morphological filter after removing impulse at zero value.

77

Table 6.1: Statistical parameters of low-stop and morphological filters derived from simula-

tions

Parameter Value
7] 10.0
my =y | -6.6e-08 ~ (.0
5= 0} 9.9815 ~ 10.0

Mo, 7.0539
S 7.8352
o 4.6293
Om 10.8423

of the means and variances of the distributions. For the low-stop filter, the parameters
and o; coincide with the distribution mean and variance my; and s?, respectively, and are
approximately equal to the signal amplitude # and the input noise standard deviation 7,
respectively, corresponding to ¢, ~ 1 and f; >~ 1. For the morphological filter, the actual
parameters fi,, and o, of the underlying normal distribution were calculated from the my
and s? using the simultancous equations (6.8). It was observed that the parameter o,,
is approximately equal to the noise intensity 7, and does not change much with the signal
amplitude 8. However, the parameter g, increases non-linearly with . It has a positive value
at @ = 0 — i.e., noise-only condition — and increases with a lower rate than the corresponding
low-stop filter parameter y;. Figure 6.2 shows the plots of the parameters y; and yu,, against
the signal amplitude 6.

The output of the morphological filter is invariant to the constant background level 3.
Furthermore, it also suppresses the clutter. Hence, the effective ‘noise’ intensity for the
morphological filter would be different from that for the low-stop filter in case of cluttered
scenario, and is denoted by n,. However, in the case of the above simulations it is the
same as the original noise intensity 7. If 7, as well as the signal amplitude 8 are scaled
by a constant factor, o,, and pu,, will get scaled by the same factor. Hence, outputs of the

morphological filter for any general 1), can be written as:

6 m 'm0
Om = Tlm fm + Hm = Tlm Gm (T_) id (f—) (69)

= ——0m
/Tn fT’l a-m

where f,, is the gain in standard deviation (f,, >~ 1), neglecting the dependency on the target

78

70

Istop

- - - morph
60+ P A

50+ P]

mu
\
\

30+ P .

20r e .

10 .~ .

0 10 20 30 40 50 60
theta

Figure 6.2: Plot of parameters y; and y,, against signal amplitude # for n = 10.

SNR, and g,,(-) is the gain in mean, depending on the target SNR 6/n,,. The function f,
can be obtained from the experimentally determined values of y,, and o, for n = 10, plotted
in Figure 6.2.

It was also observed that there is a correlation between the outputs of the low-stop
and the morphological filters. Hence, the joint distribution of the two outputs is modeled
as a normal distribution, truncated for the morphological filter. Assuming a hypothetical

t

random variable £ = (§,&,,)" which is normally distributed, the actual output vector z can

be expressed as:
2= (2, 2)" = (&, max(&,,.0))! (6.10)

The parameters of distribution of z are:

1 ()’2 T10m
= [i :| . Y = [l p 12 (611)
Hm PO10m gyn

2
m

where p is the correlation coefficient, and o7 and o2, are the individual variances of z; and

Zm, respectively. The distribution mean and covariance matrix are given by:

m 52 !5
m=| "] = " Pim (6.12)
Mo Osism 82,

79

Note that due to the linearity of the low-stop filter, we have m; = y;, s, = 0.

However, using these relations, it is analyticallyv difficult to calculate the actual correlation
coefficient parameter p from the observed correlation coefficient p’. Furthermore, such a
computation would have to be repeated for every pixel, which is highly inefficient. Hence,
the value of p = p is currently being used.

Using the above models of low-stop and morphological filter outputs, the distribution of

z for z,, > 0 is given by:

p(z|Hy) = |277$|_1/2 exXp [(: — 1) (2 - /1,0)/2]
p(z|H) = 2752 exp [(5 — j1)'T Mz - lla)/Q] (6.13)

For z,, < 0, p(z|H;) = 0 Also, there is an impulse function at 2, = 0, so that the integral of

p becomes unity.

6.3 Bayesian fusion of multiple filters

The combined likelihood ratio of the two filters is given by:

p(z|H,C) N{pg. Z¢)
Lyc(z) = ~ — 6.14
ne) = L H €)™ N, £0) (6.14)

where pg and pg are 2-D vectors denoting the mean outputs of the algorithms in presence
and absence of target. The covariance matrix X, which depends on the clutter level, can
be estimated using the image. and will be denoted by X for brevity. The same covariance
is used for the presence and absence of the target, since it is experimentally observed that
there is not much difference between the respective covariances.

Using equation (6.13), the log likelihood ratio (LLR) is given by:

1) 1 .
l(z) = logLluc(z)= —5(3 — 119)' S (2 = pg) + 5(2 — 110)'E7H (2 — po)
1
= (1o = 10)'C71 (2 = o) = 510 = 110) =" (119 = pro) (6.15)

The parameters of the LLR in absence of target - i.e.. E[z|Hg] = po, V{z|Ho] = £ — can be
computed as:
E[l(z)|H0] = (/‘9 - /m)tE‘lE[Z - NOQHO] -
V[i(z)|Ho) = (po — $0) X7V [z = puo| HolZ™

1
(1o = 110) £ (119 — p10) = —5°
(o = po) = &° (6.16)

TN =

80

where d known as the deflection coefficient [13] is the generalization of the signal to noise

ratio for multiple dimensions.

d = \/(1tg — 120)'S~" (119 — Ho) (6.17)

When the target of any strength is present, the variance parameter still remains the same
but the mean parameter changes. For the target strength such that E[z|H;] = ug, the LLR
parameters are given by:

- 1 _ 1,
Ell(2)|Hi] = (1o — o) 27 Elz = pol \] = 5 (110 = 1) T (o = pro) = 5°

F4

VIU)H] = (1= 10)'’E7 V2 — g HJE (g — o) = & (6.18)

It is seen that the mean and variance of the LLLR are dependent on the mean and variance
parameters of the filter outputs. Due to this, the probability of false alarm and mis-detection
also depends on these parameters. Accordingly, two approaches of obtaining a detector are

shown below.

6.3.1 Constant False Alarm Rate (CFAR) detector

To get a constant false alarm rate irrespective of the local variance, the LLR is normalized
so that it would have a zero mean and unit variance in absence of the target. The resulting

function is given by:

D(Z) — l(z) - E[l(Z)’HQ] _ (ﬂg - ,U())tz_l(z —_ ,UO)
VVIEIH) /(e — 10)'=" (116 — o)

This is a matched filter, which matches the 2-D outputs from low-stop and morphological
filters, to the expected outputs of these filters. Since D(z|Hy) ~ N(0,1), if a threshold 7 is

(6.19)

applied, the false alarm rate is given by:

_ 1 _a (T EDEIH] _ . ;
Pra=1 @(TDGIH] >_1 ®(r) (6.20)

where ®(-) denotes the cumulative distribution of a standard normal variable. Note that

this is now independent of any parameters. In presence of a target so that E[z|H,] = p, it

can be easily seen that D(z) ~ N(d,1). Hence, the mis-detection rate is given by:

_ o (T EIDEIH]Y _
PMD = (1v[D(Z)'H1]) = (1)(7‘ - d) (621)

81

The CFAR approach attempts to maintain a constant false alarm rate all over the image,
irrespective of the local variance. Hence, it would be useful if a constant false alarm rate is
required in all parts of the image, for example, if the parts are processed separately on parallel
processors. To check the conditions under which this filter is optimal, the log likelihood ratio

[(z) is written in terms of the discriminant function D(z) as:
[(2) =dD(z) — d*/2 (6.22)

It can be seen that, I(2) and D(z) are monotonic to each other when the deflection coefficient
d, given by equation (6.17) remains constant. Under such conditions, thresholding D(z) is
equivalent to thresholding [(z), the latter being the Bayesian optimum. The deflection
coefficient is dependent on the covariance of the noise, as well as the target strength. and
is the generalization of SNR for multiple dimensions. Thus, if the variance parameters of
the individual filter outputs, as well the target amplitudes, are constant across the image,
this approach is optimal in terms of the false alarms and mis-detection rates. However,
in practice, the parameters (especially the low-stop filter output variance) do depend on
the clutter level. In such a case, if the target amplitude is constant throughout the image,
the CFAR approach is not optimal. However, if the criterion for good detection is to detect
targets having a particular SNR - i.e., stronger targets in cluttered regions but weaker targets
in uncluttered regions — the CFAR approach can be considered optimal.

It can be seen that D(z) is dependent on the target amplitude # through py — yg, as
well as d. If pg — po is a linear function of the target amplitude €, it would cancel out in
equation (6.19) and D(z) would become independent of the signal amplitude 8. However, if
1te — pio is non-linear, the filter would be optimal only under specific conditions.

The false alarm rate is determined by the threshold 7, whereas the mis-detection rate is
also determined by the deflection coefficient d. Consider optimizing the matched filter for
a particular d, in an environment with clutter covariance . If # is the signal amplitude,
equations (6.5) and (6.9) vield:

o — 1y = tio — o | g0 -0
g — Ko = -
i Hme — mo (gm(%) - gm(O)) TIm

| g,‘,g (6.23)
i %'nl (gm(%) - gm(O))

Using this expression, the following equation should be numerically solved for # by evaluating

tg — o using equation (6.23) with the particular d.
(o — 120) S (g — o) = d® (6.24)

82

However, if the covariance matrix ¥ varies throughout the image, this procedure would have
to be carried out for all pixels, which would be highly ineflicient. Furthermore, the procedure
optimizes only for a particular value of d.

Alternatively, if one assumes that d and # are small, one can optimize the fusion using a
Locally Most-Powerful (LMP) test [13, 17]. For small value of §, we have:

3#) [9] -
flog — flo (— o= f=s0 (6.25)
06 =0 gm(O)

where s is 2-D vector independent of #. The expression is now linear in #, and the discriminant

function D(z) becomes independent of 6.

with
! t -
s=]g g,0)] (6.27)

6.3.2 Direct thresholding of Log Likelihood Ratio (LLR)

As shown in the previous section, if the amplitude of the signal to be detected is fixed
irrespective of the local variance, the overall mis-detection rate for a given overall false
alarm rate is not minimized by the CFAR approach. In fact, there cannot be a single
optimal detector for all amplitudes. Hence, the fusion should be optimized for a particular
amplitude. A criterion for choosing this amplitude is described below.

Suppose that some particular minimum rates of false alarms as well as mis-detections are
required for the algorithm. The amplitude corresponding to the minimum possible variance
- i.e., the variance of the camera noise without clutter — can be used to tune the fusion. If
the actual amplitude is smaller than this amplitude, even an optimal detector tailored to
that amplitude will not give the required false alarm and mis-detection rates. On the other
hand, since the performance of the detector increases monotonically with the amplitude, a
larger amplitude yields a better performance, though it may not be optimal.

Suppose the LLR threshold is 7. Using the mean and the variance of the LLR in absence
and presence of the target, given by equations (6.16) and (6.18), the false alarm and mis-
detection rates can be computed as:

T 2 — 2 2 /9 _
Pra=1-0 (#) Pup = ® (TTd/Q> —1-6 (MTT) (6.28)

83

If one denotes:

T4+ d*/2 - d?/2 -1
$o =D (1 — Pry) :.—d—/' o1 =2 (1 - Pyp) = /T (6.29)
then 7 can be eliminated to obtain:
G — 0 =d= \/(Hﬂ — 110)' X" (g — pt0) (6.30)

The target amplitude can be chosen such that yy corresponding to it satisfies this equation.

using £~} under noise only conditions.

6.4 Application on images

To apply this procedure on images, the statistical parameters are computed in an annular
31 x 31 window around each pixel, where an 11 x 11 window immediately around the pixel is
excluded to reduce the biasing of parameters when the target is present at the pixel. There
is a trade-off between using larger sized window giving more reliable estimates, and smaller
sized window giving better localization in case of space varying clutter intensity. The window
size used here was arbitrary. However, use of different window sizes can be explored to find
the optimum window size.

Efficient methods are used to estimate the distribution mean m and the covariance S at
each pixel of the low-stop and morphological output images. From these, the estimates of
and X are calculated and stored as images. However, in some experiments, fixed values of u,,
and o2, were used for the morphological filter, since the estimates are less reliable, but do not
change much over the image (unlike low-stop filter. where these parameters heavily depend
on the clutter). The template signal for the matched filter is calculated using equation (6.27).

and the matched filter is applied separately to each pixel.

6.5 Results

The algorithm fusion approach was evaluated using the performance characterization ap-
proach of Chapter 3. Background images obtained from digital and analog cameras shown
in Figures 6.3 (a) and (b). respectively, were used for false alarm analysis. For mis-detection
analysis, a number of targets of size 2 x 2 were added to these images. Low-stop and mor-
phological filters were applied to these images. The outputs of these filters were fused using

the two approaches described above. The local variance of the low-stop filter output, which

84

is a measure of clutter, is shown in Figures 6.3 (¢) and (d). The histogram of the local
variance is shown in Figures 6.3 (e) and (f). It is seen that the analog camera image has a
much higher clutter level than the digital camera image.

For the Constant False Alarm Rate (CFAR) fusion, the Locally Most Powerful (LMP)

test was used. This gave the matched filter template as:
s = (g1.¢,(0)) = (1.0,0.8623)"

gives a slightly lower weight to the morphological filter when the level of noise is same for
both the filter outputs. The plots of the mis-detections against the false alarms for the digital
camera images are shown in Figure 6.4 (a) and (b), These use the assumption that the outputs
of the low-stop and morphological filters are correlated. Algorithm fusion was also performed
assuming independence between filters i.e., p = 0. The independence assumption gave a
slightly better performance for the fused filter as shown in Figure 6.4 (¢) and (d), possibly
because the correlation between filters may not have been a‘(loquat'ely modeled. Similar plots
using analog camera images are shown in Figure 6.5.

In both the cases, it is seen that the fused output does not give optimal performance
for all the rates of false alarms. However, it can be observed that the fused output does
give larger weight to the filter which has a better performance in the particular case. For
example, in the case of digital camera images having relatively low clutter, (Figure 6.4), the
better performing low-stop filter is given higher a weight. On the other hand, for analog
camera images (Figure 6.5) with severe background clutter, the morphological filter which
performs better is given a higher weight. Since the individual filter which would actually
perform better in a particular case would not be known a-priori, the fusion at least serves
the purpose of selecting the better filter.

To explore the reasons for the non-optimality of the CFAR approach, the method of
thresholding the log likelihood ratio (LLR) was first used in place of the CFAR fusion.
The results of thresholding likelihood ratio are shown in Figure 6.6. The outputs of the
individual detectors, the likelihood ratio detector using each filter, and the fused likelihood
ratio detector are shown for amplitudes of 6.0 and 8.0. The amplitude used for computing

the likelihood ratio was of 6.0, which gave the signal template as:
e — p1o = (6.0,5.5603)" = 6.0(1.0.0.9267)"

which is only slightly different from the LMP template (scaled), due to the non-linearity of

the morphological filter.

Figure 6.3: Images from (a) digital (b) analog camera with partly cluttered background.
Image of the local variance of low-stop filter output, which is the measure of clutter for
images from (c) digital (d) analog camera. Histogram of the local variance of low-stop filter

output for images from (e) digital (f) analog camera.

86

7
tstop
-~ morph
- - fused |
. i
b TNl .
s ~ \\\
~ N
2107 AR Se
N .
N N
. \
N N
w0} R
\
\
'
\
v
10‘ U3 1 .2 3 Jl l!l
10 10 10 10 10 10 10
FA
(a)
Signal amplitude=6
0
10 T
Istop
- - morph
oo, fused
Wl Tl -
B .. .
Sw N b
~ \\
~ N
. \\
N \
\ \\
= \
107 R N
\
\
'
i
10*‘ i ' n
10° 10’ 10° 10° 10* 10° 10*
FA

Signal amplitude=6

Signal amplitude=8

10
istop
-~ -~ morph
- - tused
107 9
S0’ 1
ok . R]
.
\
107 : .
10 10’ 10° 10° 10 10° 10°
FA
Signal amplitude=8
0
10 T
Istop
- - mormh
- fused |
107
g210”
w0 o N
\
\
\
10 i N " -
©° 10 10° 10° 10 10° 10°
FA

Figure 6.4: Operating curves for digital camera image using CFAR fusion: Assuming cor-

relation between filters with target amplitudes of: (a) 6.0 (b) 8.0 Assuming independence
between filters with target amplitudes of: (a) 6.0 (b) 8.0

8

I

Signal amphtude = 20

10 T
e Istop
A - - marph
' ‘\ fused
\
\\‘\
,‘ K
107 |
\
N
s
NI
g0 T 1
10°
101 3 .
10° 10 10 10 10 10 10
FA
(a)
N Signai amglitude = 20
10° T v]
\ istop [{
L - - morph ;
[\77 fused
!
N 3
10 Y H
K !
NS i
RN 1
RN ,
2’ TeU e E
R %
T :
i
107 5
j
.]
10 :
10° 10' 10 10 10 10 10°

Figure 6.5: Operating curves for analog camera image using CFAR fusion:

lation between filters with target amplitudes of: (a) 20.0 (b) 40.0 Assuming independence

Signal ampiitude = 40

10 -
| Istop
_t - - morph
{ - - fused
i
t o
wh oSy
y
S
W
1 1
v
=3 A
S0} ' N
. N
< .
N f
<
'
10-!~ v \\
' S
A)
N
‘__L
T2
Y
104 “‘
10 10 10 10° 10* 10° 10°
FA
Signal amplitude = 40
10° .
5 Istop
| - - momh
- - fused |
ta
o
0 S
[
«
N
O
\
S w? Co
N !
uoy
v \
N
~ N
3 \k N !
1 L 1
N
o
S
Ve
b
o . . .
! 0 2 3 . 5
10 10 10 10 10 10 10

FA

(d)

between filters with target amplitudes of: (¢) 20.0 (d) 40.0

88

Assuming corre-

Signal amplitude=6

10
Istop
.= - morph
i lused
L3 SN .
g AR
4
A .
.
|0'] . A:
' :
i
10 " L n L I
10° 10 10 10’ 10" 10° 10
FA
(a)
. Signal amplitude=6
10" T
Istop
- - morph !
- - tused |
10 ' S~ ~ -~
Q10? RN
107 - *
.
107‘ 0 - . 2 5
10 10 10 107 10 10 10
FA

Figure 6.6: Operating curves for digital camera image using LLR thresholding: Using cor-

relation between filters with target amplitudes of: (a) 6.0 (b) 8.0 Assuming independence

Sgnal amplitude=8

between filters with target amplitudes of: (¢) 6.0 (d) 8.0

89

3
istop
- - mormph i}
- - fused i:
‘ l
i
1
o i
- BN]
A |
. :
- i
v '
\ .
- . . |
107 10 107 100 10 10° 10°
FA
Signal amplitude=8
- e
Istop :
- - momph
o _fused .
. :
1 s ~ T ~
N
.
\
.
1w0° 10’ 10° 10° 10 10° 10°
FA

Syggnai amplituge=6 . Signal amplitude=8

10 10
Istop | Istop
'~ -~ morph - - morh
- tused - fused
{3 S 107}
Sw? S10?
N I
g i ..
107 . i 10 N
. !
10 - i 10 - .
10 10 10 10 10 10 10° 10° 10’ 53 10° w0 10° 10°
FA FA

Figure 6.7: Operating curves for digital camera image using LLR thresholding, and fixed
value of morphological variance parameter 02 = 1.5, and assuming independence between
the filters, for target amplitudes: (a) 6.0 (b) 8.0

However, it was seen that for the matched signal strength of 6.0, it still did not give
desirable performance. Hence, another reason for this non-optimality was explored. It was
observed that the variance parameter o2 of the morphological filter output was underes-
timated from the images. This unreliability of was because the estimation was performed
using small windows around every point in the image. Furthermore, there was quantization
error, since the noise in the images was of the same order as the gray level resolution of the
real images. However, since the morphological filter is comparatively insensitive to clutter,
the value of 02, remains approximately same throughout the image. Hence, the entire back-
ground image from the digital camera (without adding targets) was used to pre-compute the
parameter value as 02, = 1.5. The low-stop filter parameter o7 was estimated as before, since
its value does depend on the local clutter level. The correlation coeflicient was assumed to be

zero. The results obtained using these parameters are much better, and shown in Figure 6.7.

Hence, it can be concluded that the performance of CFAR approach was poor due to the

following reasons:
1. CFAR fusion is not optimal under the condition of constant target amplitude.

2. The morphological filter parameters are not reliably estimated from small sized win-

dows.

90

d=10 d=15

o istop ; Istop
S - - morph ! i- - mormh]
SRR - fused . L tused
1 I\- '
10 | 0
|
| I
P A
e '
¥
Qn? o . - !
S0} 210)
————————
)
|
i
1
)
07 107k - -
10 0" -
10° 10 10° 10 10° 10 10° 10 1 10° 10 10 10° 10°
FA FA
(a) (b)

Figure 6.8: Operating curves for digital camera image using CFAR approach with condition
of optimality, and fixed value of morphological variance parameter o2 = 1.5, assuming
independence between the filters, where the targets have amplitude such that the deflection

coefficient d is constant equal to: (a) 10.0 () 15.0

However, as shown before, the CFAR approach is theoretically optimal, when the tar-
get amplitude is not constant, but is adjusted so that the deflection coefficient d given by
equation (6.17) remains constant. To check the optimality of the CFAR approach for this
condition, another set of experiments was performed. The statistical parameters of the low-
stop filter were estimated at every pixel using the background image without the addition
of targets. The morphological filter parameters were estimated for the entire image (instead
of individual pixels). Using the parameters of the low-stop and morphological filters, the
deflection coefficient d; for a unit amplitude of the signal was computed at every pixel, and
stored as a separate image. False alarm rate was also estimated using this image as before.
For estimating mis-detection rates, targets were added to the background image. The ampli-
tude of the target at a particular pixel was given by d/d, where d, is the function of the pixel
coordinates and d is constant. The mis-detection rate was then estimated from a number of
such images. The LMP template was used for fusing the outputs of the individual filters.
The plots of the mis-detection rate against false alarm rate are shown in Figure 6.8. It can
be seen that the fusion output is better or as good as the individual filter outputs, within

experimental error.

91

Chapter 7
Detection of Translating Objects

In addition to the detection of objects on a collision course, it is useful to monitor the objects
which are crossing the aircraft. For this purpose, a system was designed to specifically detect
objects having a translational motion in the image. To distinguish translating objects from

ground or cloud clutter, the following criteria were used:
1. The object should have sufficient signal strength.
2. The object should have an image velocity greater than a threshold.
3. The object should have a consistent motion - i.e., its velocity must not change abruptly.

The system to detect translating ohjects has been implemented on the pipelined image
processing system, the DataCube MaxPCI described in Section 2.8 to obtain real time perfor-
mance. The system was mounted on the Air Force Total In-Flight Simulator (TIFS/NC1314)
aircraft, and flight tests were conducted by NASA with another aircraft flying in front of it.
The detection and tracking of the target aircraft were demonstrated during the flight test.

This system is divided into two stages, an image processing stage and a tracking stage.
The first stage consists of image processing steps which remove most of the clutter, and
isolate potential features which could be translating objects. This stage involves repetitive
image operations such as convolution, pointwise operations, histograms, etc. which are
suitable for a pipelined architecture, and can be performed in integer format. Hence, these
steps are implemented on the DataCube machine. The output of this stage is a list of image
features which are likely to contain the target objects, including their positions and the signal
strengths. However, the list may also contain features corresponding to background clutter,

which are not separated by the simple image processing steps of the first stage. The second

92

stage tracks these features to distinguish the genuine translating objects from background
clutter using the criteria mentioned above. Since the first stage has reduced the volume of
data to be operated on, more complicated target tracking algorithms can be implemented
even on the host PC associated with the DataCube. The threshold used in the first stage
is adjusted dynamically to give a nearly constant number of features for the second stage
so that they can be processed in real time using the slower host. This matching of the
output rate of one stage to the input rate of the next stage is known as the rate constraint

criterion [5].

7.1 Image processing stage

This stage performs the basic image processing steps to suppress clutter and extract features

which could potentially be translating targets.

1. Resolution Reduction: The resolution of the image is reduced so that the svstem is

capable of operation in real time. The image is convolved with the following low-pass

filter mask and then down-sampled by two in both horizontal and vertical directions.

[1 4 6 4 1]
4 16 24 16 24
My=—16 24 36 24 6
416 24 16 24
14 6 4 1 |

Low-pass filtering suppresses high frequencies, which would otherwise have been aliased
to low frequencies by the down-sampler. Although the image resolution is reduced, the
signal to noise ratio is actually enhanced. This is because the target size is usually

greater than 2 pixels, leading to spatial integration of the target contrast.

2. Low-stop filtering: A low-stop filter is applied to the reduced image to suppress back-

ground clutter. The filter is implemented by convolving the image with the following

masks, one after the other:

02 3 2 0

14 6 41 2 8 12 8 2

M= 2|28 128 2| . Moe——l3 12 —108 12 3
Ry P82 T 708 -

1 4 6 41 2 8 12 8 2

(0 2 3 2 0]

93

The mask M, is a smoothing mask, which performs spatial integration for large targets.
A rectangular mask is used since the targets are expected to have a greater width than
height. Application of the mask A, is equivalent to subtracting a smoothed image
from the input image. The overall result of the two convolutions is the subtraction
of a low-pass filter output with a larger mask from a low-pass filter output with a
smaller mask. Hence, this step suppresses uniform background intensity and weak
clutter corresponding to low frequencies, and also performs spatial integration for larger

objects.

. Image differencing: Image differencing is performed on the low-stop filtered images by

subtracting consecutive frames. This is equivalent to a low-stop filter in temporal
direction. Since the object is assumed to be translating, image differencing suppresses
stationary objects corresponding to background clutter. It should be noted that steps
1 to 3 are theoretically interchangeable, since they are all linear filters. However,
since these operations are performed with integer arithmetic of limited precision, the

particular order of the steps is used to reduce the truncation error.

. Non-maximal suppression: Directly using the output of the previous step would give

rise to a large number of features for an extended target. Non-maximal suppression
is performed to get a single feature (or sometimes a small number of features) for the
entire target. Pixels can have both positive or negative values corresponding to bright
and dark targets, respectively. Hence, an absolute value image is first formed, and
every pixel which is not a local maximum in its 3 x 3 neighborhood is marked. The
marked pixels are set to zero in the original image - i.e., the image before taking the

absolute values.

. Histogram formation: To extract candidate features, the output from the above steps

should be thresholded. Furthermore, the threshold should be chosen so that the number
of features neither overloads the tracking stage, nor keeps it unnecessarily idle. Hence,
the threshold is selected so that the number of pixels exceeding the threshold is less than
or equal to a fixed rate which matches the operation speed of the tracking stage. For this
purpose, a histogram of the image is constructed. The threshold then is determined as
the smallest pixel value for which the number of elements in the histogram bins above
this value does not exceed the fixed rate. Applyving this value as the threshold would

then ensure that the number of features remains bounded.

94

6. Thresholding and feature output: Pixels in the image with the output value greater

than the threshold are separated as features, and their positions as well as the ampli-

tudes are transmitted to the tracking stage.

7.2 Tracking stage

This stage maintains a list of tracks containing the frame number, unique ID, position,
velocity, and amplitude. The list is empty in the beginning. he following steps are repeated

for every frame for which the list of features is received from the image processing stage:

1. Track update: For each track in the list of tracks, the list of features is scanned to obtain
features in a neighborhood window around the track position. If one or more such
features are found, the one with the largest amplitude is selected as the continuation
of the track. Using the coordinates (z1, z;) of this feature, as well as the current track
position (x, z2) and velocity (u;, uy). the expected position and velocity for the next
frame is estimated using a Kalman filter. The filter is applied separately for horizontal
(i = 1) and vertical (i = 2) directions. For each direction, the state vector is given
by X; = [T, U r. and the observation is the feature coordinate z;. The track life
n of the track is the number of frames in which the target has been observed, with
adjustments made in the frames where the target is not observed. The measurement

update is given by:

xf(n) = xi(n)+ Ky(n) (2 —x;)
ui (n) = wu(n) + Ko(n) (2 — x3) (7.1)
The state update is given by:
rin+1) = zf(n)+u(n)
ui(n+1) = u(n) (7.2)
t
The Kalman filter matrix K(n) = [Ki(n) Ks(n)] is pre-computed using the in-
verse covariance formulation of the Kalman filter. The computation is performed for

a number of n = 1... N, where N is large enough so that K(N) does not change

significantly with N.

The track amplitude is updated using recursive averaging according to the following
equation:

F(n+1)=f(n)+aF(n) (7.3)

95

where F'(n) and F(n+1) are the track amplitudes for the current and next frames. f(n)
is the feature amplitude, and « is the forgetting factor. The track life 22 is incremented

by one.

If no feature satisfving the above conditions is found in the neighborhood of the track.
the position and velocity are extrapolated using only the state update. Theoretically,
this would mean that the values of the Kalman filter matrix would have to be recom-
puted. To avoid such a computation, the value of the track life n is reduced by a factor
to approximately simulate the effect of having ‘lost track’ of the feature. The featurce

amplitude is updated using f(n) = 0 in equation (7.3).

. Formation of new tracks: After all the current tracks are updated, features in the fea-

ture list are used to check for new tracks. For every feature, the list of tracks is scanned
to see if a track is already there in its neighborhood. If not, a track is created out of
the feature with its track life n = 1. Its position (), r;) will be the same as feature
position (zi, z9), whereas velocity (u;, us) is initialized to zero. The actual velocity will

be computed only in the next frame.

. Pruning the list of tracks: If the number of tracks is too large, the stage can get over-

loaded and fail to operate in real time. To eliminate this possibility, if the number of

tracks are greater than a particular number, the weakest tracks are deleted.

{. Merging similar tracks: It may happen that two or more tracks mayv be formed corre-

sponding to the same object. Hence, tracks which are very close to each other and have

nearly the same velocity are merged, retaining the one with the larger track amplitude.

. Output: Tracks which satisfy the criteria of the object, including having an amplitude

larger than a threshold, as well as other factors are output as potential objects.

7.3 Results

The real-time image capturing, recording, and processing svstem were demonstrated by

the flight tests conducted by NASA. During the first set of flight tests, image sequences

were captured and recorded successfully at the rate of 30 frames per second. The tracking

algorithms were designed and fine-tuned using these image sequences. During the next set

of flight tests, in addition to the real-time capturing and recording, the translating target

tracking algorithm was executed concurrently at the rate of 15 frames per second. Several

96

Figure 7.1: Tracking algorithm applied on an image sequence with the target aircraft trans-
lating from right to left at a distance of 3 nautical miles. The target aircraft is located at

the end of the track in this image.

image sequences with the target aircraft crossing the host aircraft were obtained. It was
observed that the system successfully detected and tracked the translating object during the
flight tests. Figure 7.1 shows a trace of the tracking algorithm applied on an image sequence
with the target aircraft translating from right to left at a distance of 3 nautical miles.
Table 7.1 summarizes the performance of the translating target tracking algorithm with
different distances between the host and the target aircraft, during the first set of flight
tests. The false alarm rate is measured as the ratio of the total number of false alarms
throughout the sequence to the number of image frames in the sequence. The mis-detection
rate is measured as the ratio of the number of frames in which the target was missed to the
total number of frames. The false alarm rate depends on the amount and motion of clutter
in the images, whereas the mis-detection rate depends on the target size and contrast, and
therefore increases with the target distance in most cases. Since false alarms can be very
annoying to the pilots, a low false alarm rate was more desirable than a low mis-detection
rate. Hence, the parameters of the algorithms were selected to reduce the false alarm rate,
and were same for all the scenarios. It is possible to get a better performance by adjusting

parameters according to the characteristics (such as the clutter level) of each scenario.

Table 7.1: The performance of the translating target detection algorithm for a number
of target distances. The false alarm rate is the ratio of the total number of false alarms
throughout the sequence to the number of image frames in the sequence. The mis-detection

rate is the ratio of the number of frames in which the target was missed to the total number

of frames.
Distance (nmi) | Mis-detection rate | False alarm rate
1.5 0.061 0.000
1.8 0.113 0.000
2.0 0.394 0.000
24 0.059 0.000
3.0 0.056 0.000
4.7 0.335 0.183
5.0 0.803 0.147
5.4 0.643 0.000

The performance was relatively poor in the cases where the host aircraft rotated about
its own axes, resulting in large image motion of background features. To improve the perfor-
mance, the image motion due to aircraft rotation should be compensated using the aircraft
navigation data. If this data is unavailable, the background motion should be modeled to
separate independent object motion. For example, Irani and Anandan [9] separated the scene
motion into planar and parallax components, and identified independently moving objects
having a significant parallax. However, since the DataCube architecture is capable only of
simple image processing operations, any such procedure would have to be performed on the

host machine, using a feature based approach.

98

Chapter 8
Conclusion

This research was focused on designing and implementing algorithms for detection of obsta-
cles in the flight path of the aircraft using the image sequences obtained from the on board
cameras. The main contributions of this research and the possible avenues of future work

are described below.

8.1 Contributions of this research

e Basic algorithms performing signal enhancement were tested for detecting flying ob-
jects using the image sequences provided by NASA. Performance characterization of
these algorithms was conducted using simulated and real image sequences. It was ob-
served that the algorithms performed well on images with little or no clutter, but their

performance degraded in presence of clutter.

e To distinguish the objects on a collision course from the background clutter, the differ-
ence in the behavior of their image translation and expansion were studied. Conditions
under which these criteria are useful were derived. Novel methods for estimating the
rates of image translation and expansion over long image sequences were designed and
tested on the image sequence with a large amount of background clutter. The approach

successfully separated the obstacle from the clutter.

o Algorithm fusion to overcome limitations of algorithms was studied, and it was observed
that under proper conditions, a combination of algorithms performed better than the

individual algorithms.

99

e A real-time system using pipelined image-processing hardware was designed to detect
objects crossing the aircraft. The tracking algorithm to separate background clutter
from crossing objects was developed and implemented on the host machine associated

with the system.

8.2 Future work

e Many of the research ideas, such as the use of translation and expansion, algorithm
fusion, etc. were tested individually. The future goal would be to combine these into an
integrated system for obstacle detection. Performance characterization of this system

could be done with more real image sequences.

e During the estimation of image translation to discriminate a hazardous object from
background clutter, the compensation of aircraft rotation was performed using the
navigation system information. Use of background clutter to model the aircraft motion
could be explored, so that the compensation could be performed even without the

navigation system information.

e False expansion occurring due to the rotation of the target aircraft can be studied.
This expansion takes place only in a particular direction, resulting in deformation
of the object in the image. Methods to distinguish this deformation from uniform

expansion can be studied.

e Gaussian models were used for studying the behavior of individual algorithms to per-
form algorithm fusion. Better models could be developed, especially in presence of

clutter, where the Gaussian models would not be as robust.

e To improve the performance of crossing object detection, the image motion due to
aircraft rotation should be compensated. This could be done either using the navigation
data from the aircraft, or by modeling the image motion separate independent object
motion. Since the DataCube architecture is capable only of simple image processing
operations, such a procedure should be performed on the host machine, using a feature

based approach.

100

Bibliography

1]

2]

N. Ancona and T. Poggio. Optical flow from 1-D correlation: Application to a simple

time-to-crash detector. International Journal of Computer Vision, 14:131-146, 1995.

J. Arnold, S. Shaw, and H. Pasternack. Efficient target tracking using dynamic pro-
gramming. [EEE Trans. on Aerospace and Electronic Systems, 29(1):44-56, January
1993.

Y. Baram and Y. Barniv. Obstacle detection by recognizing binary expansion patterns.
IEEE Trans. on Aerospace and Electronic Systems, 32(1):191-197, January 1996.

Y. Barniv. Dynamic programming solution for detecting dim moving targets. IEEE

Trans. on Aerospace and Electronic Systems, 21(1):144-156, January 1985.

J. S. Bird and M. M. Goulding. Rate-constrained target detection. IEEE Trans. on
Aerospace and FElectronic Systems, 28(2):491-503, April 1992.

D. Casasent and A. Ye. Detection filters and algorithm fusion for ATR. IEEE Trans.
on Image Processing, 6(1):114-125, January 1997.

E. Francois and P. Bouthemy. Derivation of qualitative information in motion analysis.
Image and Vision Computing, 8(4):279--288, November 1990.

G. C. Holst. CCD Arrays, Cameras and Displays. JCD Publishing, Winter Park, FL,
1996.

M. Irani and P. Anandan. A unified approach to moving object detection in 2D and
3D scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(6):577- 589,
June 1998.

101

[10]

12

[14]

[15]

[16]

[17]

18]

[19]

T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. M. Haralick. A methodology for
quantitative performance evaluation of detection algorithms. IEEE Trans. on Image
Processing, 4(12):1667-1674, December 1995.

R. Kasturi, O. Camps, L. Coraor, K. Hartman, T. Gandhi, and M.-T. Yang. Perfor-
mance characterization of target detection algorithms for aircraft navigation. Technical
report, Dept. of Computer Science and Engineering, The Pennsylvania State University,
October 1998.

R. Kasturi, Y.-L. Tang, and S. Devadiga. A model-based approach for detection of
runways and other objects in image sequences acquired using an on-board camera.
Technical Report CSE-94-051, Department of Computer Science and Engineering, Penn
State University, August 1994.

S. M. Kay. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.
Prentice Hall, Upper Saddle River, NJ, 1993.

S. S. Krause. Avoiding Mid-Air Collisions. TAB books, Mc Graw Hill Inc., Blue Ridge
Summit, PA, 1995.

R. C. Nelson and J. Y. Aloimonos. Obstacle avoidance using flow field divergence. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 11(10):1102-1106, 1989.

K. Nishiguchi, M. Kobayashi, and A. Ichikawa. Small target detection from image
sequences using recursive max filter. In Proc. SPIE, volume 2561, pages 153-166, July
1995.

H. V. Poor. An Introduction to Signal Detection and Estimation. Springer-Verlag. New
York, NY, 2nd edition, 1994.

S. M. Tonissen and R. J. Evans. Performance of dynamic programming techniques for
track-before-detect. IEEE Trans. on Aerospace and Electronic Systems, 32(4):1440-
1451, October 1996.

D. Wood. Jane’s World Aircraft Recognition Handbook. Jane’s Information Group Ltd.,
Coulsdon, UK, 1992.

102

Part 111
Real-Time Implementation of Obstacle Detection Algorithms

on the Datacube MaxPCI Architecture

Abstract

A system was designed to capture image sequences from a digital camera, record the
images into a high speed disk array, and process the images to perform real-time obstacle
detection. A set of obstacle detection algorithms were chosen and implemented on the same
system. The objective was to detect any potential obstacle in the aircraft’s flight path by
analyzing the images captured using an on-board camera in real-time. Using this system, real-
time image data was recently obtained successfully from flight tests conducted at NASA
Langley Research Center. It was observed that the system successfully detected and tracked
translating objects during the flight test. The recorded digital image sequences are valuable for

further research on obstacle detection algorithms under different conditions.

1
2

SYSLEM OQVEIVIEW ...c.eviveriiiririsiseisnisosissisissossesssssssssessssssesassossssssessasesesssesssssesssssssaneneneas 2
2.1 Image capturing using remote digital CCD camera and motorized lens................ 3
2.2 Real-time recording of digital image sequences using new technology disk.......... 3
23 Aircraft maneuvers in the flight testS............cooiiiieiiiiiiiceeeeee e, 6
2.4 Real-time image processing using MaxPCI image processing cards 7
2.5 Obstacle detection algorithmsocoeiiriiiiiiieieiecceceece e, 8
2.6 Backup from the new technology disk to a high capacity tape driver................. 10
Implementation of Obstacle Detection Algorithms on MaxPClcoeeeuvevrecrnererennes 12
3.1 AVaI1abIE TESOUICES ... ittt et 12
3.2 Pipelined cost MOdEl........cocooviiiiiiiiiiiiciiicece e 13
33 Pipelined SChedulingccocooiiiiiiiiiic e 14
34 Basic concept of MaxPCl programming...............ccoeeeeeieeeriiicieieeereeeeeene, 17
3.5 Advanced features of MaxPCl programming................cocoeevviiivioniceecnennenne. 19

3.5.1 Pipe altering threadocoooiiiiii e, 19

3.5.2 Double-buffering.........cccoiriiiiiiiiieesee e 19

3.53 High speed Image access.........cooviiriiiiieieiececceeeerece e 20
3.6 Detection of translating targetsc.oovvvieeveiieiieieccie e 20

3.6.1 Recording/Playback subsystem.............ccoovuiiviiiieiiiiic e 20

3.6.2 Image processing subsystem for translating targets................ccocevveeveeenen.n.. 22

3.6.3 Tracking SUDSYSIEIML....c...iiviieiieiiicii et 27
3.7 Detection of cONtracting targets.........cceeevieiuieiieeciieee e 29

3.7.1 Image processing subsystem for contracting targets...............ccoeveeeenn.ne. 29
3.8 Results of the implementation on MaxPClIc..cccooeviiiiiiiiiieee e, 34
Implementation of Obstacle Detection Algorithms on MaxVideoccoceeeerneecrennnns 37
4.1 Differences between the old MaxVideo system and the current MaxPCI system 37
4.2 Implementation of one branch of a morphological filter..............ccocvevveerennn.... 39
4.3 Implementation of one branch of a dynamic programming................c.cocoveu....... 40
4.4 Result of the implementation on MaxVideo............c.covviveiiiieeneereereeeeeeeeenn. 41

.. 43
APPENAIX.nncnniriorietinrierieiieennisitssisteiesissssanessesssssessssssassssasnsssessssessesssosesnssaesassasssnens 4
Al Hardware specification of Datacube MaxPClcccocovvirivieeeeeeeeeereennn. 44
A2 The diagrams for all implemented obstacle detection algorithms........................ 46
BIDLOZIAPRY ...uouvnniieititiiiicictiiecsisanssisansestesssarasssessessessessssessessassessessassnsansnsnsanes 57

i

Chapter 1

Introduction

A proper hardware platform should be chosen to implement the obstacle detection
algorithms in real-time. The fastest choice is a customer designed multi-processor circuit board,
but it’s very expensive and less flexible since the circuit board needs to be changed to reflect the
modification of the algorithms. To optimize the performance/price ratio, a general purpose real-
time image processing system may be considered as the processing unit of the on-board synthetic
vision system. The Datacube MaxPCI, a general purpose real-time image processing system
with pipelined image processor, is a cost-effective way to meet high-throughput low-latency
demands and has become popular among some researchers working on real-time vision
problems. The New Technology Disk (NTD) available with the Datacube MaxPCI has the
required ability to perform high-speed digital image recording, which is also an important part of
our project. Moreover, the obstacle detection algorithm should be reliable and fast so that even a
small target can be detected in real-time. A set of obstacle detection algorithms were chosen and
implemented on a Datacube MaxPCI system.

Chapter 2 gives an overview of the system performing real-time image capturing, recording,
and processing. Chapter 3 deals with the implementation issues of obstacle detection algorithms
on the MaxPCI system. Chapter 4 explains the implementation of the obstacle detection

algorithms on the old MaxVideo system. Finally, a conclusion is given in Chapter 5.

Chapter 2

System Overview

A system was designed to capture image sequences from an on-board digital camera, record
the images into a high speed disk array, and process the images using multiple pipelined
processors to perform real-time obstacle detection. Using this system (shown in Figure 2.1),
real-time digital image data was recently obtained successfully from flight tests conducted at
NASA Langley Research Center. These image sequences are valuable for further research on

obstacle detection algorithms under different conditions (size, contrast, background etc).

KODAK

Dighal Motorized
Camera Lens
100 Foot Digital
Data Cable
100 Foot
Fibre Channel Cable Apetture
Control
Cable
c M RS232
i — o} A
T P
—
— R c
— o |
c— L Aperture
L Remote
E * Control
R 1 Box
Now gy Disk
with 4x16 GB capacity NT Wor

Figure 2.1: The system consists of a Windows NT workstation with
two internal Datacube MaxPCI image processing cards, and one
New Technology Disk (NTD) Recorder. The sensor consists of a
KODAK Megaplus ES1.0 digital CCD camera and a PENTEX 1-
inch lens with motorized aperture control.

2.1 Image capturing using remote digital CCD camera

and motorized lens

A critical component of the vision system is the imaging sensor. A Kodak Megaplus
ES1.0 charge coupled device (CCD) digital camera with a Cosmicar/Pentax 1 inch (50 mm)
motorized lens was chosen, since digital CCD cameras offer superior performance compared to
their analog counterparts. Digital cameras are also highly immune to the spatial and temporal
artifacts caused by transmission-line noise. The Kodak ES1.0 captures 30 frames per second
with a 1K x 1K resolution in a 8 bit format (256 gray levels) [7]. It was mounted in the cockpit
of a modified Convair C-131 aircraft, called the Total In-Flight Simulator (TIFS). Because the
recording system was located in the aft portion of the aircraft, a 100 foot digital data cable
transferred the image data signals to the recording system. The synchronized clock signals
generated by the camera were also transferred through the data cable. A good quality cable with
low capacitance prevents asynchronism and noise that can occur with lengthy cables.

The dynamic range of the captured images was very large due to the variations in factors
such as the sun orientation, cloud conditions, and aircraft altitude. To prevent saturation or very
low gray levels in the captured images, a motorized aperture lens was installed on the camera
and a remote aperture control box next to the recording system (100 feet from the camera).
With this motorized aperture, the operator manually adjusted the aperture during the flight. The
camera exposure control software provided by Kodak was not used because that could
inadvertently produce blurred images (caused by extended exposures) or unacceptable noise
levels (caused by brief exposures). Furthermore, it was easier for the operator of these
experiments to use a manual knob to change the lens aperture rather than use the software to

change the exposure time of the camera.

2.2 Real-time recording of digital image sequences using

new technology disk

A typical flight sequence with a target aircraft in the field-of-view can last several

minutes and produce thousands of 1K x 1K images. One means of reducing the massive amount

of disk storage space to hold these images is to use compressive algorithms. However, because
it was desirable to analyze the raw characteristics of the camera, uncompressed images were
stored. For this task, a system recording data at a rate of 30 MB/second (or 1.8 GB/minute) was

required.

< > Host CPU

[{@—P MaxVGA video card D MacVGA

bus
‘ ' MaxPCI #1 with Storage 96 &
b General Purpose PSMOD

u Maxbus

— 3 New
s ¢—Pp MaxPCl #2 with Convolver 200 & (x2) Technology
General Purpose PSMOD Disk
with
‘ . New Technology Disk 4x16 GB
(NTD) Controller e —-

capacity

Figure 2.2 : Our system with two Datacube MaxPCls and a NTD. The
system is a Pentium PC workstation, consisting of two Datacube
MaxPClIs and one New Technology Disk (NTD) Recorder. The first
MaxPCl is equipped with a storage 96 and a General Purpose PSMOD.
The second MaxPCl is equipped with a Convolver 200 and another
General Purpose PSMOD.

To satisfy these large bandwidth and storage requirements, a Pentium 233 workstation
(running Windows NT) with two internal MaxPCI cards from Datacube, Inc., and an external
disk array, called the New Technology Disk (NTD), were used (shown in Figure 2.2). The
MaxPClI is a real-time image processing card with pipelined image processors. It provides a
cost-effective way to meet high-throughput, low-latency demands. The data cable was
connected from the digital camera to one of the MaxPCI cards. The camera sends images
through two channels, with odd lines in one channel and even lines in the other channel. The
MaxPCI card receives the images through these two channels, with a throughput of 15 MB/sec
from each channel. The MaxPCI card was configured so that the two channels are merged to
form complete images in the MaxPCI’s memory. Then the images are sent via the MaxVGA bus
to the MaxVGA card for display, and via the PCI bus to the Adaptec AIC-1160 disk controller
card for storing. Transfer to the disk controller card was accomplished using High Speed Image

Access (HSIA), a technique that moves data directly back and forth between the disk controller

card and the MaxPCI’s memory, without being copied in an intermediate memory buffer. This
eliminates the copying of data to host memory as it would be required by other disk storage
products. Finally, the images are transferred through a Fibre Channel (FC) cable to the NTD,
where the images are stored. The Fibre Channel is a technology for transmitting data between
computer devices at a data rate of up to 1 GB/sec. Since it is three times faster than the Small
System Computer Interface (SCSI), Fibre Channel is expected to replace SCSI as the
transmission interface between servers and storage devices. The NTD is a Redundant Array of
Independent Disks (RAID) sub-system that enables high-speed lossless digital image recording
and playback. The NTD used was a four disk array, with 16 GB per disk. With the FC option,
it is possible to achieve NTD transports in excess of 32 MB/sec. To achieve the highest access
speed, there is no formatting of data storage on the NTD. All images are recorded as plain raw
data to the consecutive physical sectors of the NTD. The NTD can record and playback images
at a real-time frame rate up to 40MB/sec.

Datacube offers a helpful graphical user interface (GUI) called MaxLab to control the NTD.
The interface of the MaxLab is like a VCR panel. MaxLab was used in the first flight test for
image data recording. However, MaxLab is a commercial package useful only for NTD control,
so no additional image processing tasks can be performed simultaneously while recording.
Another C-callable library, NtdIfLib, is also available for programmers to create their own NTD
access programs according to their needs. The NtdIfLib is integrated with ImageFlow, a C-
callable library that configures and manages data transfers on the MaxPCI to perform real-time
image processing. With the power of the NtdIfLib and ImageFlow programming, the system
can not only record the digital images in real-time, it can also be extended to perform several
image processing algorithms concurrently. It should be noted that it is not a simple job to
develop a parallel program on the MaxPCI since the programmer must know a good deal about
the underlying hardware. Moreover, since there is no useful debug tool for ImageFlow at this
time, the programming task using ImageFlow is time-consuming. However, a very satisfactory

system can be developed with appropriate effort.

2.3 Aircraft maneuvers in the flight tests

Two aircraft were involved in these flight tests, which were based at NASA Langley
Research Center. The TIFS was the host aircraft, and it carried the Kodak camera and Datacube
computer. A Beechcraft King Air B-200 was the target aircraft. The purpose of the flight tests
was to obtain images containing different maneuvers conducted by the target aircraft. For all
maneuvers, the host aircraft had an altitude of 3500 feet and a speed of 159 knots. Two classes
of maneuvers were flown.

In the translating maneuver (shown in Figure 2.3(a)), the target aircraft translated (moved)
in the image sequence. It was performed with the target aircraft crossing perpendicular to the
direction of motion of the host aircraft. The speed of the target aircraft was 159 knots. This
maneuver was performed for different vertical and horizontal separations. Images were recorded
with the target aircraft 500 feet below and 500 feet above the host aircraft at distances of about
1, 2, 3, 4 and 5 nautical miles. Recording ended when the target aircraft left the field of view of
the camera.

In the contraction maneuver (shown in Figure 2.3(b)), the target aircraft maintained a fixed
position in the image surface as it flew away from the host aircraft. The target aircraft speed
was 209 knots. Images were recorded with the target aircraft ascending at 500 feet per minute,
descending at 500 feet per minute, or maintaining a fixed altitude. Recording ended when the

target aircraft was about 5 miles from the host aircraft. The images from this sequence can be

—h]
" < targer
T

T

(a) (b)
Figure 2.3: Two kinds of flight maneuvers. (a) Translating maneuver: the
target aircraft crossed in front of the host aircraft with a vertical separation
of 500 ft. (b) Contraction maneuver: the target aircraft maintained a fixed
position in the image window by flying directly away from the host aircraft.
The target aircraft maintained the same altitude as the host aircraft. (Not
drawn to scale.)

played backwards to simulate the target aircraft motion that occurs with a collision.

Two flight tests were conducted over a several day period in January and September, 1999.
The first flight test focused on image capturing and recording, while the second flight test
performed image capturing, recording, and processing concurrently. By recording images over a
multiple day period in each flight test, a range of contrast conditions was obtained. In addition,
the background of the target varied depending on its altitude. This approach provided a
comprehensive set of images for testing the image processing algorithms under different

conditions.

2.4 Real-time image processing using MaxPCI image

processing cards

The MaxPCI is a real-time image processing card with pipelined processors
manufactured by Datacube Inc. It uses a Windows NT workstation as a host machine and
supports multiple simultaneous pipelines that can be switched by software at read-time frame
rates. Each MaxPCI card consists of five modular hardware devices and a set of memories

connected by a large programmable switch as shown in Figure 2.4. The first device is the

Host machine:
Pentium PC

1

MaxAcg| [MaxVGA| [PClbusPort |

|

Crosspoint Switch

I 1 1 |

Advanced | | Arithmetic || Look-Up|| Processing &
Memory Unit Table || Storage Module
(AM)xS || (AU)x2 ||[(LUT)x2|| (PSMOD) x2

Figure 2.4: Each MaxPCI is composed of a MaxAcq acquisition unit,
a MaxVGA display unit, five Advanced Memorys (AM), two
Arithmetic Units (AU), two Look-Up Tables (LUT) and two
PSMOD add-on modules.

MaxAcq acquisition unit that receives either a digital or an analog signal from the camera. The
second device is the MaxVGA display unit that outputs the video signal to the MaxVGA video
card. The third device is the Arithmetic Unit (AU) which performs arithmetic and logical
operations. The fourth device is the Look-Up Table (LUT) that performs pixel value
transformations. The fifth device is the Advanced Memories (AM) component which can
receive an image from the cross-point switch and transmit another image to the cross-point
switch at the same time. The AM also allows the host computer to read or write pixels via the
PCI bus. Moreover, each MaxPCI may be extended by the selection of two add-on processing
and storage modules (PSMOD). The variety of the PSMODs enables users to balance their
needs of processing, memory and resources. All of these devices operate on pixel arrays at 40
MHz. The MaxPCls communicate with each other through two buses called Maxbuses. Each
Maxbus has a bandwidth of 160 MB/sec. The MaxVGA is a separate display card, which inputs
images from the MaxPCI through a private MaxVGA bus. Hence, the display can be accelerated
without interfering with the PCI bus traffic. ImageFlow programming allows the programmer to
specify connections between the processing elements inside hardware devices, as well as
between ports on the cross-point switch. It also provides access to attributes associated with

each processing element.

2.5 Obstacle detection algorithms

Obstacle detection using image processing requires robust, reliable and fast techniques.
These techniques should provide a high probability of detection while maintaining a low
probability of false alarm in noisy, cluttered images of possible targets, exhibiting a wide range
of complexities. The size of the image target can be quite small, from sub-pixel to a few pixels
in size. Furthermore, the detection algorithm must report such targets in a timely fashion,
imposing severe constraints on their execution time. Finally, the system must not only work
well under the controlled conditions found in a laboratory and with data closely matching the
hypothesis used in the design process, but it must be insensitive—i.e., must be robust -- to data
uncertainty due to various sources, including sensor noise, weather conditions, and cluttered

backgrounds.

Over the past year, several algorithms were combined to form a composite system for
detection of contracting targets [S]. The steps that form this composite system are:

(1) Temporal Averaging: For objects in a uniform background, having a very small image
motion, such as those on a collision or near-collision course. When the target motion is
small, temporal averaging improves the SNR and reduces the processing rate required for
subsequent steps.

(2) Pyramid construction with low-stop or morphological filtering: This is a pre-processing
step in which a pyramid is constructed to accommodate different sizes and velocities of
objects. Low-stop filtering [6] is performed at each pyramid level to remove background
intensity. There is an option to perform morphological filtering [2] in place of low-stop
filtering at every pyramid level. This can be done when the background contains clutter
due to clouds and/or ground to improve performance.

(3) Dynamic Programming: A dynamic programming algorithm [3] is performed on pre-
processed frames to integrate the signal over a number of frames by taking the target
motion into consideration.

It should be noted that one or more of these steps can be bypassed so that any of the basic
algorithms described above can be tested individually using the same system. The above target
detection algorithms were implemented on the Datacube MaxPCl system.

In addition to detection of objects on a collision course, it is useful to monitor the objects
that are crossing in front of the aircraft. For this purpose, a system was designed to specifically
detect objects which have a translating motion in the image. To distinguish translating objects
from ground or cloud clutter, the following criteria was used: (1) The object should have
sufficient signal strength. (2) The object should have an image velocity greater than a threshold.
(3) The object should have a consistent motion.

The algorithm to detect translating objects has also been implemented on the Datacube
MaxPCI system to obtain real time performance. The system was mounted on the host flight
aircraft and performed well in detecting and tracking objects. The algorithm is divided into two
concurrent parts. These parts are: (1) Image processing steps which remove most of the clutter,
and isolate potential features which could be translating objects. These steps consist of temporal
differencing, low-stop filtering, non-maximum suppressing (NMS) and feature extraction.

These image operations are suitable for a pipelined architecture, and can be done in integer

format. Hence, these steps are implemented on the Datacube MaxPCI machine. The output of
this part is a list of image points which are likely to contain the target objects, along with their
signal strengths. (2) Tracking these features using a Kalman filter to distinguish genuine
translating objects from background clutter which was not separated by the simple image
processing steps of the first part. Since the first part has reduced the volume of data to be
operated on, more complicated target tracking algorithms can be implemented even on the host
PC associated with Datacube. The threshold used in the first part is adjusted dynamically to give
a nearly constant number of features for the second part so that they can be processed in real

time using the slower host. This is known as the rate constraint [4].

2.6 Backup from the new technology disk to a high
capacity tape driver

The total capacity of the NTD is 64 GB, which allows 36 minutes of real-time recording
of 1K x 1K images at 30 frames per second. This capacity is sufficient for the capturing test of
each flight. However, after each flight, it is necessary to backup the contents of the NTD, so the
NTD space could be used again for the next flight. For this, the NTD was temporarily removed
from the aircraft and directly connected via fibre channel to another Windows NT server with a
64 GB local hard disk array and a Seagate Sidewinder 200 high capacity tape drive with
autoloader ability. The backup process can be divided into two steps. The first step is to copy
the contents of the NTD into the hard disk of the server. Because there is no formatting of data
storage on the NTD, the Windows NT cannot access the NTD directly. Therefore, a C-callable
low-level library, called NtdLib, is used to access the NTD. The second step is to backup the
data from the local hard disk to the high capacity tape drive. The Seagate Sidewinder 200 is a
high-capacity tape autoloader that combines Advanced Intelligent Tape (AIT) and autoloader
technology to provide data storage for high-end computer systems. The autoloader technology
enables the loading of four cartridges at the same time and it can exchange the cartridges
automatically. The native (uncompressed) capacity of each cartridge is 25 GB, and three
cartridges were required for each NTD backup. The speed of the first step is limited by the
throughput of the local hard disk, while the speed of the second step is limited by the tape drive.

10

It was observed that the first step takes about three hours to complete while the second step takes
another eight hours. Since the NTD is not needed in the second step, it is available for the next
capturing task after the first step. Moreover, since both steps can be scheduled to execute

automatically, no human interaction is required during the whole process of the backup.

11

Chapter 3

Implementation of Obstacle

Detection Algorithms on MaxPCI

3.1 Available resources

Our Datacube IP system is equipped with two MaxPCI IP cards. Each card has multiple
pipelined processors, memory and other resource. Up to two PSMODs can be installed on each
MaxPCI. The first MaxPCI in the test flight system was equipped with a Storage96 (ST) and a
General Purpose (GP) PSMOD, while the second MaxPCI was equipped with a GP and a
Convolver200 PSMOD. Table 3.1 lists the main resources in the first MaxPClI card. Table 3.2
lists the main resources in the second MaxPCI card. It should be noted that ST is the same as

AM while GP is similar to AU. The only difference between AU and GP is that each AU is

Table 3.1: The number of main resources in the first MaxPCl card.

MaxPCI #0 Resource Abbreviation Amount (ID)
Arithmetic Unit AU 2 (0-1)
Arithmetic Memory AM 5(0-4)
Look-Up Table LUT 2 (0-1)

Delay Element DLY 2 (0-1)
General Purpose add-on PSMOD GP 4(0-3)
Storage96 add-on PSMOD ST 6 (0-5)
Analog Acquisition Module QA 1

12

independent of one another while GPs are hardwired to be paired sequentially. This implies that
once GPO is used, the output of GP0O will feed into GP1 automatically. Although GP1 can be
configured to do nothing but only pass through the input data, GP1 will be occupied and cannot
be used for any other purpose to avoid resource conflict. Another important constraint is the
communication channels (CH) between the two MaxPCI cards. There are only eight CH
channels, with eight bits in each channel. Thus, the traffic between two MaxPCls should be
minimized to preserve the precious CHs. The first MaxPCI was equipped with QA acquisition
module to input an analog signal, while the second MaxPCI was equipped with a QI acquisition

module to input a digital signal from a camera.

Table 3.2: The number of main resources in the second MaxPClI card.

MaxPCI #1 Resource Abbreviation Amount (ID)
Arithmetic Unit AU 2 (0-1)
Arithmetic Memory AM 5(0-4)
Look-Up Table LUT 2 (0-1)

Delay Element DLY 2 (0-1)
Convolver200 add-on PSMOD VD 1

General Purpose add-on PSMOD GP 4 (0-3)
Digital Acquisition Module QI 1

3.2 Pipelined cost model

Experiments were performed on the MaxPCI system to analyze the delay of ImageFlow
pipes. The result shows that the total delay of processing is equal to the sum of each serial
pipe’s delay, while each serial pipe’s delay is proportional to the number of input pixels. It is
concluded that the delays of each schedule mainly depends on its input image size and the

number of sequential pipes. The following cost function for processing delay is obtained from

13

the experiments. Suppose a subtask 7, is divided into n sequential pipes:

{pipekl s Dipe,, -+, pipe,, } , then

Delays(T,) = ZDelay(pipe;) , forl <k <Cpy

i=]
Delay(pipe;;) = Cy + (Tee X)) + (Tee X 5;)
Delays(T,) is the total delay of the subtask 7.
C, 1s the number of sequential pipes.
Delay(pipe,,) is the delay of the sequential pipe pipe,;.
where < C,, is the configuration time of pipe,,.
T is the clock cycle time.

n,; is the number of gates in pipe,,. (the complexity of the pipe)

s,, 1s the size of input image of pipe,;.

3.3 Pipelined scheduling

The concurrency can be either spatial concurrency or temporal concurrency. The spatial
concurrency (parallelism) means that tasks can be executed by several processors
simultaneously, while the temporal concurrency (pipelining) means that chains of tasks can be
divided into stages, with every stage handling results obtained from the previous stage. The
temporal concurrency can be exploited to increase the throughput whenever a long sequence of
image processing tasks is applied on a continuous image sequence.

Consider an example shown in Figure 3.1. For simplicity, suppose each task has the
same computation cost (40 ms). On a single processor case shown in Figure 3.1(a), the total
iteration period is 200 ms (5 FPS). For scheduling techniques that only consider parallelism
(shown in Figure 3.1(b)), only the three middle tasks can be sped up, thus the critical path limits
the iteration period to 120 ms (8.3 FPS). For scheduling techniques that only consider
pipelining (shown in Figure 3.1(c)), the middle stage becomes the bottleneck, limiting the
iteration period to be 120 ms (8.3 FPS). In fact, the task graph has both spatial and temporal
concurrency. To maximize the throughput, both types should be exploited. Figure 3.1(d) shows
the scheduling of three pipelined stages, with the second stage having three tasks executed in

parallel. If five processors are available, this partition is optimal, resulting in an iteration period

Iteration period = 120ms

lteration period = 200ms

Throughput = 5FPS Throughput = 8.3FPS
(a) Single processor (b) Pure Parallel Scheduling
PE1 Stage 1 PE1 Stage |

Stage 2

Stage 3
Iteration period = 120ms Iteration period = 40ms
Throughput = 8.3FPS Throughput = 25FPS

(c) Pure Pipelined Scheduling (d) Parallel & Pipelined Scheduling
Figure 3.1: Parallel and Pipelined scheduling

Pl P2 P3 P1.2.3 ‘Pl
]] S
fl f1 P2 |
1| g fl ¥
P3;
—_] P4,5.6 .
— — | P1 , P4
o SR ¥
21| 22 [fl £2,P2| fl P5
| R
- P7.8.9 P3| P6
— T Pl el pr
Bl (3] (2] |f1 RS
I R f3 P2 f2P5| fl1 P8
L TR T
— L LI
(a) S.pati.al. (b) T'emp-OTal (c) Three pipes with both
Pipelining Pipelining spatial and temporal pipelining

Figure 3.2; Spatial and Temporal pipelining
of 40 ms (25 FPS). Therefore, an ideal scheduling strategy should exploit both spatial and

temporal concurrency present in the task graph.
Moreover, there are two levels of pipelined scheduling. The first level is the pixel level

pipelining, or the spatial pipelining. The spatial pipelining means that an image is fed into a

15

processing pipe pixel by pixel. Suppose there is a processing pipe using three processors, like
figure 3.2(a). Whenever a new pixel is fed into pl, an old pixel will be fed from pl to p2, so
that p2 can process the old pixel while pl processes the new pixel. Since the MaxPCI are
designed with pipelined processors, spatial pipelining is ready as soon as we declare, configure
and fire a processing pipe. The second level is the frame level pipelining, or the temporal
pipelining. The temporal pipelining means that continuous image frames are fed into several
processing pipes frame by frame. Suppose there is a processing pipe requiring nine processors.
We can divide the pipe into three different pipes, each pipe with three processors. Then image
frames can be fed into these pipes in a pipelined way, like Figure 3.2(b), so that three pipes can
be executed concurrently. Both spatial and temporal pipelining can be exploited at the same
time in this example. Figure 3.2(c) shows that three pipes execute concurrently (frame level
pipelining), while three processors work concurrently in each pipe (pixel level pipelining).

In order to use the spatial pipelining, a processing pipe cannot flow through the same
resource more than once. The resource includes processor (AU), memory (AM), look-up table
(LUT) and MaxPCI channels (CH). In order to use the temporal pipelining, more care should be
taken to avoid resource conflict. Since several pipes execute concurrently at the same time by
temporal pipelining, none of these pipes can share the same resource. Moreover, the number of
concurrent pipes is also limited because there are only six internal clocks in each MaxPCI.

The design of pipeline scheduling can be divided into three steps. The first step is to
partition the dependency graph into several pipeline stages with minimum cut value. The second
step is to allocate resources for each pipeline stage. The final step is to schedule the operations
inside each pipe stage using allocated resources. Currently, all these steps are implemented and
optimized manually by performing an exhaustive search on all possible schedules, and
calculating the processing delay of each schedule using the cost function. The schedule with
minimum processing delay is the best schedule. However, this brute-force method is time-
consuming and impractical for large graphs. A scheduling heuristic should be developed to

approximate the optimal schedule according to the cost function in acceptable time.

16

3.4 Basic concept of MaxPCI programming

There are two ways to program the Datacube MaxPCI hardware. ImageFlow 0 is a low-
level library of C-callable functions that configure and manage data transfers on the Datacube
MaxPClI pipeline processing devices. ImageFlow allows the programmer to specify connections
between the processing elements inside hardware devices, as well as between ports on the
crosspoint switch. It also provides access to attributes associated with each processing element.
Programmers cannot simply state that two image streams are to be added; they must specify
which ALU is to be used, where in memory the images are stored, and the path the images will
take to reach the ALU. It’s a programmer’s job to handle resource conflicts. On the other hand,
Datacube Wit is a high level package that allows image processing computations to be described
in terms of coarse-grained dataflow graphs. With the Datacube Wit, programmers no longer
have to specify how images will be stored in memory, what paths they will take through the
switch, which computational elements will perform a specific function, or how many
computational resources there are. If there is any resource conflict in the graphs, the Datacube
Wit scheduler detects the conflict automatically and schedules the jobs sequentially to solve the
conflict. However, Datacube Wit generalizes the resources mapping and cannot take full
advantage of the MaxPCI hardware. Moreover, Datacube Wit cannot support system with
multiple MaxPCI cards and is not a mature product at this time. In our project, ImageFlow was
used to develop optimized programs of all the obstacle detection algorithms.

An algorithm should be defined as multiple parallel pipes to accomplish the desired tasks
efficiently. These algorithms are then mapped to a sequence of pipeline processing elements.
The basic steps 0 to program each ImageFlow pipe are explained as follow.

Attaching Surfaces

The source memory buffers (called surfaces) at the beginning of a pipe are attached to
the transmission gateway. The destination surfaces at the end of a pipe are attached to the
receiving gateway. Gateways are always connected to data surface stores. While there can be
multiple data surface objects on a single surface store, there can only be one data surface object
attached to a gateway at a time. Attaching the particular data surface to the gateway makes
explicit which data surface object will participate in the pipe.

Connecting Pipes

17

After the pipeline processing elements are defined, processing pipelines are built by
setting programmable switches, routing the data through the appropriate sequence of elements,
and tying multiple elements together into a processing pipeline. The attributes of each pipelined
processing element are set so that the element performs the desired processing operations.
Creating Pipes

Pipes should only be created after the pipe has been connected, its elements’
programmable attributes have been set, and gateways have been attached to all its surfaces. The
pipe creation function takes the destination surface objects as its first argument, which can be
either single destination or multiple destinations. The function’s second argument is its trigger
type. This can be “single shot” which transfers a single frame of image data, or “continuous”
which transfers image data continuously.

Arming Pipes

Arming the pipe is performed after the pipe set-up work is complete. The arm command
initiates PC ImageFlow tracing back through all the connections and attributes that were set to
determine the exact organization and structure of the pipe. PC ImageFlow then calculates all the
correct register loads for configuring the IP system hardware to match your software settings,
and finally makes the register loads. After arming, the pipeline has been constructed, but data
has not begun to flow.

Firing Pipes

The actual image processing tasks are performed by firing data through each of these pipes.
The pipes actually start the data transfer from the source surfaces to the destination surfaces.
Data can be fired though the pipe as either a single shot or a continuous image sequences.

Every ImageFlow program should have at least three pipes, the acquisition, the
processing and the display pipe. The acquisition pipe obtains image sequences from the camera
while the display pipe offers a stable output for the monitor. In many applications, it’s too
complicate to handle the whole processing in one pipe, thus, the processing is usually partitioned

into many pipes.

3.5 Advanced features of MaxPCI programming

3.5.1 Pipe altering thread

One of the most important features of ImageFlow programming is the Pipe Altering
Thread (PAT). The use of PAT can reduce re-arm time for a pipe, and is vital to efficient
applications. When the pipe is armed, all the delays and configuration information will be
calculated and this consumes a significant part of the execution time. With a PAT, these steps
are performed in advance and the results of the calculation are stored, and then loaded when the
pipe is armed. Of course, the loading time is very fast compared to the time for all the
calculations of the arming operation, and that is the advantage of the PAT. PAT provides an
option to speed up the image processing by pre-calculating the pipe delay and parameter setting.

However, it also increases the complexity of the ImageFlow programming.

352 Double-buffering

Double-buffering can be helpful when consecutive continuous pipe transfers run at
different frame rates. For example, our camera has an acquisition rate of 30 frames per second
and the MaxPCI has a processing rate of 40 frames per second. With mismatched frame rates
like these, the read can outrun the write, producing read-crossing-write errors that result in splits,
or jumps in moving objects in the processed image. To eliminate problems like this, and to
improve the overall system performance, we may consider using double-buffering. In double-
buffering, separate buffers for read and write operations are created on a single memory surface.
While one frame is being written to the surface, the previous frame can be read out. The read
must wait for the completion of the write. Then the buffers are swapped, the write buffer
becomes the read buffer, and vice versa. The double-buffering technique is used in our
implementation whenever the MaxPCI records to the NTD, playbacks from the NTD, and

acquires from the camera.

19

3.5.3 High speed image access

High Speed Image Access (HSIA) is a technique that moves data directly back and forth
between the disk controller card and the MaxPCIl’s memory, without being copied in an
intermediate memory buffer. This eliminates the copying of data to host memory as it would be
requited by other disk storage products. The HSIA port on the MaxPCI offers good
performance in accessing image data via the PCI bus. HSIA also supports image data transfer
between the host memory and the MaxPCI’s memory. An ImageFlow data transfer pipe can be
configured to perform eight, sixteen, or thirty-two bit HSIA transfers using one, two, or four
image memories in MaxPCI. HSIA enables data transfer pipes to be declared inside a PAT, thus

increasing the transmission speed and programming flexibility.

3.6 Detection of translating targets

The implementation of detection for translating targets can be divided into three
subsystems: the record/playback subsystem, the image processing subsystem, and the tracking
subsystem. The first and second subsystems are implemented on Datacube MaxPCI cards, while
the third subsystem is implemented on the host CPU. All three subsystems should be executed
in parallel to make the whole system run as fast as possible. Hence, care should be taken to

avoid any resource conflict and reduce the communication between subsystems.

3.6.1 Recording/Playback subsystem

Both the recording and playback portions of the record/playback subsystems need to
handle double-buffering, because the NTD operates at a faster rate than the MaxPCI.

Recording

Real-time image recording is also an important issue in our project. The Kodak camera
generates data on two channels. One channel contains odd rows, while the other channel
contains even rows. The NTD can also read from two buffers. However, the NTD expects that

one buffer contains odd columns, while the other buffer contains even columns. In order to

solve this conflict, two channels acquired from the camera should be merged into one 1kx1k
image using PA_G_BOOL, then be separated into two buffers vertically (shown in Figure 3.3).
PA_G_BOOL is a small hardware element that can merge two images using a simple logical
operation. The merged image is also useful for display purposes. The HSIA port on the

MaxPCI offers good performance in accessing image data via the PCI bus.

o

Kodak Camera ES 1.0 |

0Odd rows channel }——

am1_ 0] | Am1_1 |
Odd Rows Even Rows
Even rows channel | |Am1 0| |Am1_1]

PA_G_BOOLO

PA_OP47

:

Whole frame H IP Subsystem }

0dd columns channel

0Odd Columns Even Columns

Even columns channel

NTD Controller NTD Controller PA_DISP_MEM

(a)Algorithm (b) Implementation
Figure 3.3: NTD Recording.

NTD Controller

NTD

| sto_s | | sto_1 |

—-{ Horizontal Odd channel

—-{ Horizontal Even channel

Whole frame

| Image Processing Subsystem]

PA_G_BOOLO

PA_OP47

|[am1i0] |[Am1_1] [PA DISP_MEM
Odd Columns Even Columns
(a)Algorithm (b) Implementation
Figure 3.4: NTD Playback.

21

Playback

Real-time playback from the NTD is useful for algorithm testing and development.
Basically, the implementation of playback is similar to recording, with a reverse order of
pipelined connections (shown in Figure 3.4). In fact, the implementation of playback is simpler

because the camera is no longer necessary, and we can skip the acquisition pipe.

3.6.2 Image processing subsystem for translating targets

This subsystem performs the basic image processing steps to suppress clutter and extract
features which could potentially be translating targets. The image processing subsystem is the
most complicate subsystem, and occupies the most resources. Figure A.5 shows an overview of

the image processing subsystem.

Temporal differencing

Image differencing was performed on the low-stop filtered images by subtracting
consecutive frames. This is low-stop filtering in temporal direction. Since the object was
assumed to be translating, image differencing would suppress stationary objects corresponding to
background clutter. It should be noted that the first three steps are theoretically interchangable,
since they are all linear filters. However, since these operations were performed with integer
arithmetic of limited precision, care was taken to reduce the truncation error to a minimum. The
Aml_2 and Am1_3 were used as a temporal buffer to store the last frame and the frame before
last frame (shown in Figure 3.5). The difference image was obtained by subtracting the frame
before the last frame from the current frame.
Sub-sampling

Sub-sampling was used to divide the image size by a factor of two, so that the system
was capable of execution in real time. Low-pass filter was performed before down-sampling to
reduce the loss of sub-pixel information. This step reduced the resolution of the image by two.
However, since the target size was usually greater than two pixels, this step actually enhanced
the signal to noise ratio due to the spatial integration performed by the low-pass filter. A 5x5

Gaussian lowpass filter was implemented using the VD_NMAC_A in the Convolver200 shown

22

in Figure 3.6. Sub-sampling was performed by adjusting both horizontal and vertical zoom

factors of the receiving gateway in the AM1_4.

Odd Columns Even Columns
(Amio| [Ami1] |Am1_3] Ft-)

Am1_2 | F(t)

PA_G_BOOLO | F(t+1)

Merge

Am1_3 | F(t-1)
_OL] Pass

Gp1_1 | Subtraction

(a)Algorithm (b) Implementation

Figure 3.5: Temporal Differencing.

146 4
416 24 16 4
6 24 36 24 6
416 24 16 4]
e 6 4 1

VD _NMAC_A | Lowpass Filter

l

| 5x5 low-pass filter 1

AM_RCV |Sub-sampling by 2

[Sub-sam‘pling by ZJ

(a)Algorithm (b) Implementation

Figure 3.6. Sub-sampling.

23

Low-stop filtering

Low-stop filter was used to suppress the background clutter. The filter was formed by
subtracting a low-pass filter of large size from a low-pass filter of a much smaller size. The
filter mask used is shown in Figure 3.7. The filter effectively subtracts from every pixel the
mean of its neighborhood, thus suppressing uniform background intensity and weak clutter.
Since a half set of Convolver200 resources was occupied by the step of sub-sampling, only 100
points of Convolver200 (VD_NMAC_C and VD_NMAC_D) can be used in this step. In order
to use these 100 points efficiently, two sequential 7x7 low-stop filters were used to simulate a
big 13x13 kernel low-stop filter.
Non-maximum-suppressing

Non-maximum-suppressing (NMS) was used to extract the local maximum. If the
magnitude of a pixel was not greater than all of the neighbor magnitudes, then the magnitude of
the pixel was set to zero. After applying NMS, the number of final features can be reduced and
the overall throughput can be increased. A 3x3 NMS was implemented by subtracting the
original image from the image after 3x3 dilation. It is required to detect both positive and
negative targets. However, two sets of 3x3 dilation would consume a lot of resources, especially
AU. In order to save precious resources, an absolute operation was performed before NMS, so
that only one set of dilation was required (shown in Figure 3.8).
Histogram accumulation and automatic threshold selection

To extract candidate features, the image obtained from the above steps should be
thresholded. Furthermore, the threshold should be chosen so that the number of features neither
overloads the tracking subsystem, nor keeps it unnecessarily idle. Hence, the threshold was
selected so that the number of pixels exceeding the threshold was less than a fixed rate that
matches the operation speed of the tracking subsystem. For this purpose, a histogram of the
image was used. The HP in MaxPCI can generate a general histogram. The histogram consists
of 256 bins. Each bin occupies two bytes. Then the histogram was accumulated using the
AUO_I to find out the threshold value. The LUT0_0 was configured according the automatic
selected threshold value. Finally, pixels in the image with the amplitude value smaller than the

threshold value were suppressed using the LUTO_0 (shown in Figure 3.9).

24

1

3013 2% 26 13
4 20 168 168 20
4 20 168 16K 20
T3 ¢ 2 13
7 14 14 7
0

el A=

=

S = b s —

l VD_NMAC_C

13x13 low-stop ﬁlterJ

o0 0o 0o o0 00

01 7T 14 14 7

VD NMAC D o 313 26 26 133
— = o 4 20 x& &% 20 4

04 20 -KR KR 20 4

00313 26 26 13 3

001 T 14 1 7o)

(a)Algorithm (b) Implementation

Figure 3.7: Low-stop filter.

ams

Absolute value

3x3 Dilation

[Thresholding (T=0) |

m Subtraction

ABS

| NMS | ' Abs(NMS) | | NMS Abs(NMS)
- . b e it e |

(a)Algorithm (b) Implementation
Figure 3.8: Non-maximum suppressing.

25

Feature extraction
The pixels passing the thresholding were extracted as features. The position and
amplitude of each feature were transmitted to the tracking subsystem. The information of
features can be extracted using the statistic module inside AM shown in Figure 3.10. Feature
coordinates were extracted using AMO_2, while feature amplitudes were extracted using
ABS_NMS |

|

| Histogram Generation]

l Histogram Accumulation]

I Configure Threshold LUTJ

1

ABS_NMS | | ABS_NMS |

Thresholding | Thresholding LUT

THRESH THRESH |

(a)Algorithm (b) Implementation

Figure 3.9. Histogram accumulation and automatic threshold selection.

NMS | | THRESH

NMS | ' THRESH |

1
|

[Feature extraction | | AMO_2 |] AMO_3 |

(a)Algorithm (b) Implementation

Figure 3.10: Feature Extraction.

26

AMO_3. Since the threshold value in the last step was selected so that the number of pixels
exceeding the threshold is less than a fixed rate, the number of features was guaranteed to fit into
the memory surface safely. Since the tracking subsystem was implemented using the host CPU,
the features were transferred from the MaxPCI to the host memory so the tracking subsystem
can read from the host memory directly. The technique of HSIA was used to efficiently perform

the feature transmission through the PCI bus.

3.6.3 Tracking subsystem

This subsystem maintained a list of tracks containing the frame number, a unique ID,
position, velocity, and amplitude. The list was empty in the beginning. The following steps
were repeated for every frame:

(1) Input: The list of features was received from the image processing subsystem.

(2) Track update: For each track in the list of tracks, the list of features was scanned to obtain
features in a neighborhood window around the track’s position. If there were any such features,
the strongest of these features was selected as the continuation of the track. Using the
coordinates of this feature, as well as the current track position and velocity, the expected
position and velocity for the next frame were estimated using a Kalman filter. If no such feature
was found in the neighborhood of the track, the position and velocity were extrapolated in the
same Kalman filter framework, using only the current values for the track. The track amplitude

was updated using recursive averaging with a forgetting factor:

F

n+l

=F, +af,
where F and F,, are the track amplitudes for the current and next frames,

F,, 1s the feature amplitude, and

a is the forgetting factor.

The feature amplitude F), is zero if no feature is found.
(3) Formation of new tracks: After all the current tracks were updated, features in the feature
list were used to check for new tracks. For every feature, the list of tracks was scanned to see if
a track was already there in its neighborhood. If not, a track was created out of the feature. Its
position should be the same as the feature position, whereas velocity was initialized to zero. The

actual velocity was computed only in the next frame.

(4) Pruning the list of tracks: If the number of tracks was too large, the subsystem can get
overloaded and fail to operate in real time. To eliminate this possibility, if the number of tracks
were greater than a particular number, the weakest tracks were deleted.

(5) Merging similar tracks: It may happen that two or more tracks may be formed
corresponding to the same object. Hence, tracks that were very close to each other and had
nearly the same velocity were merged, retaining the one with larger amplitude.

(6) Output: Tracks which satisfy the criteria of the object including amplitude larger than a

threshold, and other factors were output as potential objects.

Table 3.3 summarizes the required resources and execution throughput for the operations
described in this section. The required resources are based on the implementations on the
Datacube MaxPCI system. The reported execution throughput is based on an input image with
1kx1k resolution. The only exception is the histogram accumulation operation that uses a 256
bin (512 byte) histogram as the input. Therefore histogram accumulation executes much faster

than all the other operations.

Table 3.3: The required resources and execution throughput for operations
implemented on the Datacube MaxPCl system.

Operations AM [AU|DLY |[CH|LUT |VD| Response
(input size) time (ms)
NTD Record/Playback (1kx1k) 2101 0 1 0 |0 249
Camera Acquire (1kx1k) 2100 (0] 0]O 34.1
Temporal Differencing (1kx1k) 31210] 0 {0 29.7
Non-maximum suppression 215 3 (13|12 70 29.7
(1kx1k)

Histogram Accumulation 1] 1 0 |0 1 0 0.3
(256 bins)

Feature Extraction (1kx1k) 210 0 0 1 0 29.7

28

3.7 Detection of contracting targets

The implementation of the detection algorithm for contracting targets can be divided into
three subsystems: the record/playback subsystem, image processing subsystem, and tracking
subsystem. The record/playback subsystem is exactly the same as the record/playback
subsystem for translating targets (explained in previous section). The tracking subsystem for
contracting targets is not implemented yet, though it is similar to the tracking subsystem for

translating targets. The image processing subsystem is explained in the following section.

3.7.1 Image processing subsystem for contracting targets

This subsystem performs the basic image processing steps to suppress clutter and extract
features that could potentially be contracting targets. Two algorithms were designed for the
detection of contracting targets. The first algorithm performs a lowstop filter followed by six
dynamic programming operations (shown in figure A2), while the second algorithm performs
three morphological filter operations followed by six dynamic programming operations (shown
in figure A3). Both algorithms use a pyramid construction operation as a pre-processing step.
The algorithms can be separated into several individual operations. The individual operations
were implemented successfully on the Datacube MaxPClI system, however, extended work is
still required to arrange and connect individual operations together into a complete subsystem

for contracting targets.

Pyramid construction

To detect targets of a number of different sizes and velocities, spatial integration can be
performed by forming an image pyramid. A hierarchy of images, each with half the resolution
of the previous one was formed. A low-pass Gaussian filter was performed before down-
sampling to reduce the loss of sub-pixel information. A three-level pyramid construction can be
divided into three sequential pipes (shown in Figure 3.11). The first pipe smoothed and sub-
sampled the original 1kxlk image into a 512x512 image, and copied the lkx1k image to the

destination memory surface. The second pipe smoothed and sub-sampled a 512x512 image into

29

a 256x256 image, and copied the 512x512 image to the destination memory surface. Finally, the
third pipe copied the 256x256 image to the destination image. It should be noted that these three
pipes cannot be executed concurrently because they need to write into the same destination

memory surface (Am1_3).

Input (1Kx1K)
Outputt
i 1Kx1K

Convolve
1Kx1K
l Shrink 512x512
Output2
512x512 VD_NMAC_A | Lowpass filter
Convolve
512x512 Sub-sampling by 2
h 512x512 256x256
_Shrink | e

256x256 | Am1_2 | 256x256
| Am1_3] 256x256

(a)Algorithm (b) Implementation
Figure 3.11: Pyramid Construction.

| 4 6 4 1

4 16 24 16 4

5x5 low-stop filter | VDO NMAC C| ¢ X oo

J | 4 6 4 1
(a)Algorithm (b) Implementation

Figure 3.12: Low-stop filter.

30

Lowstop filter

A low-stop filter was used to suppress the background clutter. The filter was formed by
subtracting a low-pass filter of large size from a low-pass filter of a much smaller size. The
filter effectively subtracts from every pixel the mean of its neighborhood, thus suppressing
uniform background intensity and weak clutter. Since the VD_NMAC_A in the Convolver200
was occupied by the step of pyramid construction, the VD_NMAC_C was used in this step. The
filter mask used is shown in Figure 3.12.

Morphological filter

In the case of an image with little or no clutter, a low-stop can be used. However, if the
background has significant clutter, the low-stop filter is not as effective in removing it. A
morphological filter [2] can remove large sized features (usually clutter), while retaining small
sized features (usually targets). A difference between the original image and its morphological
opening (top-hat transform) outputs small-sized positive targets—i.e., bright targets in dark
background—whereas the difference between the morphological closing and the original image
(bottom-hat transform) outputs negative targets, i.e., dark targets in bright background. Each of
these images can be separately used to detect targets.

The main operation inside a morphological filter is either a dilation followed by an
erosion (closing) or an erosion followed by a dilation (opening). A dilation (erosion) can be
done by configuring an arithmetic unit (AU) to perform a maximum (minimum) operation.
Delay elements (DLYO, DLY1, DLY2, and DLY3) were included in the pipe to adjust the
alignment properly (shown in Figure 3.13).

Temporal averaging

To decrease the probabilities of false alarms and missed detections, one can integrate
observations spatially or temporally. In case of stationary targets, optimal detection can be
achieved by adding (or averaging) the images in the sequence, and thresholding the output. A
recursive filter was used with a forgetting factor ‘a’ between 0 (full forgetting) and 1 (no
forgetting). The output F(k) at time k is given in terms of the input f{k) as:
F0)=0, Fk)y=(1-a)f(k)+aF(k-1)

31

Am1_3

DLYO

l

(0,0) {0,-1) (0,1)

Dilate(1x3)
Aul 0 Maximum

Erode(1x3)
l pLy2| | [DLY3

(0,0) (0-1) (0, 1)

Aut 1 Minimum
Ami_4 !
(a)Algorithm (b) Implementation
g

Figure 3.13: Morphological Filter.

High Byte Low Byte

[amo0| |Amo_1] [Am1_4]
F(t-1) (1)
F(t-1) ()
x3 x1 I
3 ” Au0_0 Addition
Addition 4
/
F(t) F(t
v [sto3] [Amoo] [Amo_1]
High Byte High Byte Low Byte
(a)Algorithm (b) Implementation

Figure 3.14: Temporal Averaging.

In order to reduce the truncation error to a minimum, a 16 bit averaging operation was
desirable rather than an 8 bit averaging operation. An arithmetic unit (AU) was configured to
perform a weighted 16 bit averaging. The Am0_0 was set to stored the high byte, while the
AmO_1 stored the low byte of the averaging output (shown in Figure 3.14).

Dynamic programming

In case of moving targets, the temporal averaging filter does not improve the detection.
A dynamic programming algorithm [3] is more effective in detection of moving targets. The
algorithm is based on shifting the images before averaging them so as to align the target to be
detected. Since the velocity of the target could be arbitrary, the velocity space (u,v) is

discretized within the range of possible target velocities, and for each discrete velocity on the

grid, an intermediate image F’ is created recursively using:

F(x, y;u,v0)=0

F(x,y;u,vik)= f(x,y;k)+a max F(x-u,y-vu,v;k-1)

Finally, a maximum operation is performed at time N, when the result is to be reported:

(X)eQ(xy)

F,(x,y;K)= max F(x,y;u,v;K)

Each dynamic programming consists of four pipes. Each pipe is a recursive temporal
averaging with an additional dilation (maximum) in the loop (shown in Figure 3.15). The
Gp0_0 was configured to perform the weighted averaging, while the Gp0_l was configured to
perform a maximum operation with four inputs. The delay elements (DLY0, DLY1) were

inserted in the proper position to achieve the correct alignments for the four inputs of the

maximum

F(t-1) lf(t)
+

St0_0

Maximum

r— F(t-1) (1)
Addition x3 x1
4 Gp0 0 | Addition
/\ /4
00 (-1 /\
wﬂi (1,0 (0,0) (1,0) (0,-1) (1,-1)
aximum Gp0_1
F(t) F(t)
' |sto0] [sto_1]
(a)Algorithm (b) Implementation

Figure 3.15: Dynamic Programming.

33

Table 3.4 summarizes the required resources and execution throughput for the operations
described in this section. The required resources are based on the implementations on the
Datacube MaxPCI system. The reported execution throughput is based on an input image with

1kx 1k resolution. A smaller input size should result in a larger throughput.

Table 3.4: The required resources and execution throughput for operations
implemented on the Datacube MaxPCI system.

Operations AM |AU|DLY |CH|LUT |VD| Response
time (ms)
(input size)

Pyramid Construction (3 levels: 2101 0 O 0 |1 39.2

1kx1k, 512x512, 256x256)

Lowstop Filter (1kx1k) 1|1 1 0| 0 |1 29.7

Morphological Filter (1kxlk,both| 2 | 10| 4 |2 0 | O 29.7

positive and negative, 3x3 kernel)

Temporal Averaging (lkx1k) 301 0] 0 |0 29.7

Dynamic Programming (1kx1k) 5191 4 (71 0|0 29.7

3.8 Results of the implementation on MaxPClI

Figure 3.16 shows a trace of the tracking algorithm applied on an image sequence with the
target aircraft translating from the right to the left side of the image. A detection is shown by
drawing a small black square around the detected position. The distance between the host and

target aircraft is 3 nautical miles in this scenario.

34

Figure 3.16: Tracking algorithm applied on an image sequence with the target
aircraft translating from the right to the left side of the image at a distance of three
nautical miles. The target aircraft is located at the end of the track in this image.

Table 3.5 summarizes the performance of the translating target tracking algorithm for a
number of distances between host and target aircraft. The false alarm (FA) rate is the ratio of
the total number of false alarms throughout the sequence to the number of image frames in the
sequence. The miss detection (MD) rate is the ratio of the number of frames in which the target
was missed to the total number of frames. The false alarm rate depends on the amount of clutter
in the images, whereas the miss detection rate depends on the target size and contrast, and
therefore increases with the target distance in most cases. Since false alarms can be very
annoying to pilots, a low false alarm rate was more desirable than a low miss detection rate.
Hence, the parameters of the tracking algorithm were selected deliberately to reduce the false
alarm rate. The tracking parameters are the same for all scenarios. It is possible to get better
performance by adjusting parameters individually according to the characteristics (such as the

clutter level) of each scenario.

35

Table 3.5. The performance of the translating target tracking algorithm for a number of target
distances in nautical miles (nmi). The false alarm (FA) rate is measured as the ratio of the total
number of false alarms throughout the sequence to the number of image frames in the sequence.
The miss detection (MD) rate is measured as the ratio of the number of frames in which the
target was missed to the total number of frames. The algorithm was executed at 15 FPS on the

Datacube MaxPCI system.

Target | Target Distance Ground Cloud
Description| No. Brightness|Direction; (nmi) |Clutter| Clutter | MD FA
Target 500 | 1 | Negative | RtoL 1.5 0.061 | 0.000
feet below | 2 | Negative | LtoR 1.8 0.113 | 0.000
TIFS 3 | Negative | RtoL 3.0 * 0.056 | 0.000
4 | Positive | RtoL 4.7 *x 0.363 | 0.180
S Positive | RtoL 5.0 *x 0.803 | 0.147
Target 500 | 6 | Negative | RtoL 1.5 0.061 | 0.000
feet above 7 | Negative | RtoL 2.0 0.092 | 0.000
TIFS 8 | Negative | RtoL 3.0 * 0.057 | 0.000
9 | Negative | RtoL 4.7 ** 0.335 | 0.183
Random 10 | Negative | RtoL 1.2 *x 0.159 | 0.063
traffic 11 | Positive | LtoR 24 0.059 | 0.000
encounter 12 | Negative | RtoL 3.0 * 0.053 | 0.000
13 | Negative | RtoL 3.0 * 0.089 | 0.000
14 | Negative | LtoR 3.0 ** 0.524 | 0.386
15 | Negative | RtoL 5.0 * 0.192 | 0.038
16 | Negative | RtoL 5.4 * * 0.643 | 0.000

36

Chapter 4

Implementation of Obstacle

Detection Algorithms on MaxVideo

Before the delivery of the MaxPCI system in October 1998, some parts of the obstacle
detection algorithms were implemented on an old MaxVideo 200 system. MaxVideo 200 is an
earlier Datacube model that works slower and has fewer hardware resources. Two examples are
given in this section to explain the implementation on the MaxVideo system.

No matter whether the MaxPCIl or the MaxVideo is used, the process of Imageflow
programming can be divided into four steps. The first step is to define the algorithms as
multiple parallel pipes to accomplish the desired tasks efficiently. These algorithms are then
mapped to a sequence of pipeline processing elements. After the pipeline processing elements
are defined, processing pipelines are built by setting programmable switches, routing the data
through the appropriate sequence of elements, and tying multiple elements together into a
processing pipeline. Third, the attributes of each pipelined processing element are set so that the
elements perform the desired processing operations. Finally, the actual image processing tasks
are performed by firing data through each of these pipes. Data can be fired though the pipe as

either a single shot or a continuous sequence of images.

4.1 Differences between the old MaxVideo system and

the current MaxPCI system

There are several improvements for the current MaxPCI system over the old MaxVideo
system (Table 4.1). First, the clock rate of the new system increases from 20 MHz to 40 MHz.

This means the data in the pipes can be fired two times faster than the current system. Second,

37

Table 4.1: Differences between the old MaxVideo system and the current MaxPCls

system.
Old System Current System
Pipelined Accelerator MaxVideo 200 MaxPClI x 2
Clock Rate 20MHz in General 40MHz
40MHz inside AM
Signal Input (MaxAcq) Analog Digital or Analog
Advanced Memory (AM) 24MB 32MBx 2
Add-on Memory Module N/A 16MB x 6
(Storage 96 PSMOD)
Arithmetic Unit (AU)] 4
Add-on Arithmetic Unit N/A 4x2
(General Purposc PSMOD)
Add-on Convolver Unit 8x8 Kernel 200 Points Kernel
{Advanced Processing Unit) (Convolver 200 PSMOD)
Look-Up Table (LUT) 8 bit LUT 16 bit LUT x 2
Clock Generator 5 Unlimited
Bus Type VME PCI
Host Machine Sun Sparc Workstation Pentium PC

there are more Advanced Memory (AM) elements in the new system. The AM not only can be
used as source and destination storage by the pipes, but they can also be used as intermediate
storage inside long pipes. With more AM, the new system has the ability to build datapaths for
more complex algorithms. Third, there are twelve Arithmetic Units (AU) in the new system.
Compared to the current system which has only one AU, there will be fewer resource conflicts
and we can fire more data pipes concurrently. Thus, the degree of parellelism can be increased
and the frame rate can be improved. Fourth, the Analog Scanner (AS) is replaced by the
MaxAcq acquisition unit, while the Analog Generator (AG) is replaced by the MaxVGA.
MaxVGA, a separate display card, inputs images from the MaxPCI through a private MaxVGA
bus, thus the display can be accelerated without interfering with the PCI bus traffic. Fifth, the
functions of the Advanced Processing (AP) unit are replaced by the selection of two add-on
Processing & Storage Modules (PSMOD). The variety of the PSMODs enables users to balance

their needs of processing, memory and resources. Finally, the capacity of the convolver (CV)

38

and the look-up table (LUT) is also increased, giving us more flexibility to design and optimize
the datapath for our applications. Generally speaking, the new MaxPCI system far surpasses the

old MaxVideo system. Thus, a better frame rate can be obtained for the same obstacle detection

algorithms on the current MaxPCl.

4.2 Implementation of one branch of a morphological

filter

This section explains how to implement one branch of a morphological filter with a 2x2
mask (Figure 4.1a) on the MaxVideo system. Generally speaking, one branch of a

morphological filter consists of a minimum operation with four inputs followed by a maximum

| T -DLY del li
| (41,1‘1). {01y AP* {de ay one mc)
. Minimum ‘
o ~a _ Pipel .
({Lih 1. (m"]|mun])
Minimum
i
r“"”/\““’ Pipe 2
: [[L{N}}]
b [Maximum | AP _DLY |(delay one line)
| » 5 Pipe2 ‘
i [[uh L0y
! Maximum (maximum)

(a) the flowchart of a branch (b) hardware mapping

in mophological filter of (a)
[aucorr] [auGops [aucops] [auaom]

(dclay | pixel) (delay 1 pixel)

AU_N_ALU3 |(maximum) AU_N_ALUT {{maximum)
AU_N_ALUS |(maximum)

(c) the configuration of AU-Nonlinear performing

maximum operations. This is a part of pipe 1.
Figure 4.1: Implementation of a branch in

Mophological Filter

39

operation with another four inputs. However, there is only one AU in the MaxVideo which can
be divided into separate AU_Linear and AU_Nonlinear parts. The AU_Linear can be
configured to perform any arithmetic operation while the AU_Nonlinear can simultaneously
perform any logical operation. Both the AU_Linear and AU_Nonlinear are capable of handling
four inputs at a time. Thus, the processing of a morphological filter should be divided into two
pipes. The first pipe performs a minimum operation with four inputs and the second pipe
performs a maximum operation with another four inputs (Figure 4.1b). The four inputs of each
AU should be a 2x2 neighborhood window, ie. (x,y), (x+Ly), (x,y+1) and (x+1,y+1).
MaxVideo uses delay elements to handle the correct alignment of data. The AU_DLY element
can handle only horizontal shifts while the AP_DLY element can handle vertical shifts. By
setting the crosspoint switchs and adjusting the element attributes, we can arrange the right
datapath that uses the combination of AU_DLY and AP_DLY to offer the desired alignment
(Figure 4.1c¢).

4.3 Implementation of one branch of a dynamic
programming

Now suppose we want to implement one branch of a dynamic programming on the
MaxVideo system. Generally speaking, the dynamic programming is a recursive averaging
followed by a maximum operation with four inputs (Figure 4.2a). Again, there is only one AU
in the MaxVideo so we need to divide the processing into two pipes (Figure 4.2b). In the first
pipe, the AU_Linear is configured into a 3:1 weighting adder. AU_Linear consists of three
adders and only one of them is used in this example. For each adder’s input, there is one
multiplier to handle the weighting of that input. Here, before the addition is performed, the first
input is multiplied to three times while the second input remains the same. After the addition is
completed, there is a shifter to normalize the output. Since we want to divide the output by four,
we configure the shifter so that the output is shifted right for two bits (Figure 4.2c). In the
second pipe, the AU_Nonlinear is configured to perform a maximum operation with four inputs.

The configuration is the same as the case in the example of mophological filter (Figure 4.1c).

40

Pipe |

x1 X

|
Addition |
4 |

/\Pipe 1

o e
Maximum

NN

0.4y [ARi}
Maximum

Pipe 2

(a) the flowchart of a branch (b) the hardware

in Dynamic Programming mapping of (a)
[atcorn] [at_t ks fconstant 3y [Au6.0m | [Auik2 Jconstant 1)
AU_L_MULTS3 |(multiply) AU_L MULT2 | (ouinly)

AU_L_ADDI [(addition)

AU_L_SHIFT3 | (right-shift 2 bits)

(¢) the configuration of AU-Linear performing an 3:1
weighted addition operation. This is a part of pipe 1.

Figure 4.2. Implementation of a branch
in Dynamic Programming

4.4 Result of the implementation on MaxVideo

Several algorithms have been implemented on the old Datacube MaxVideo 200. Table
4.2 shows the result performance on different sizes of input images. The first number represents
how many frames can be executed per second, the second number in parameters represents the
number of sequential pipes required to perform the task. From the table, we can observe that
there are two factors affecting the frame rate. The first factor is the input image resolution. If
the resolution of the input image is doubled, then the frame rate is reduced to about one fourth.
The second factor is the complexity of the algorithms. More sequential pipes are required to
map a more complex algorithm. If the number of sequential pipes is doubled, then the frame

rate is reduced to half.

41

Table 4.2: Results of the implementation on the current MaxVideo system. The first number

represents how many frames can be executed per second, the second number in parentheses

represents the number of sequential pipes required to perform the task.

Testing Algorithms 128x128 256x256 512x512 1Kx1K
fps(pipes) |fps(pipes) |fps(pipes) |fps(pipes)

Temporal Averaging

{(with acquisition pipe & display pipe)

® Recursive 30(5) 30 (5) 15 (5) 7.5(5)

® Hierarchical 2 frames 30 (4) 30 (4) 30 (4) 15 (4)

® Hierarchical 4 frames 30(5) 30 (5) 15(5) 7.5 (5)

® Hierarchical 8 frames 30011 15(11) 7.5(1) 3.7(12)

Morphological Filter (both positive &

negative target, with acquisition pipe)

® 2x2 mask 30(12) 15 (12) 6(12) 1.9 (12)

® 3x3 mask 15 (20) 10 (20) 3.3 (20) 1.0 (20)

® 4x4 mask 15 (20) 10 (20) 3.3(20) 1.0 (20)

Morphological Filter

(both positive & negative target)

® 2x2 mask 86.6 (10) |25.7(10) |7 (10) 2.1 (10)

® 3x3 mask 458 (18) [14.5(18) {3.8(18) 1.2 (18)

® 4x4 mask 45.8 (18) [14.5(18) 13.8(18) 1.2 (18)

Pyramid Construction&Lowstop Filter (3

level, both positive & negative target, with 15(9) 15 (10) 10 (11) 2.1 (13)

acquisition pipe)

Dynamical Programming 53 (1%) 17 (15) 4.6 (15) 1.3 (15)

Spatial-Temporal Averaging & Opitical Flow Out of

(with acquisition pipe & display pipe) 15 6 2 Advanced
Memory

Lowstop + Dynamic Programming (both
positive & negative target, including 128, 256

and 512 image pipes, with acquisition pipe & |1.37
display pipe)

Morphological + Dynamic Programming

(both positive & negative target, including

128, 256 and 512 image pipes, with 1.01

acquisition pipe & display pipe)

42

Chapter 5

Conclusion

The feasibility of the real-time image capturing, recording and processing system was
demonstrated by two flight tests conducted by NASA this year. During the first flight test in
January 1999, image sequences were captured and recorded successfully at a rate of 30
frames/second. Ten real-time image sequences with translating targets, and six image sequences
with contracting targets were obtained, containing 90 GB (50 minutes) data total. The tracking
algorithms were designed and fine-tuned using these image sequences. During the second flight
test in September 1999, not only the real-time image capturing and recording was performed but
also the translating target tracking algorithm was executed concurrently at a rate of 15
frames/second. Output of the algorithm was displayed on an XVS display screen in the cockpit.
Nine real-time image sequences with translating targets were obtained, containing 20 GB (22
minutes) data. All image sequences are available upon request for further research on either
translating or contracting obstacle detection algorithms under different conditions (size, contrast,
background etc). It was observed that the system successfully detected and tracked translating
objects during the flight test.

In some image sequences, it was noticed that a lot of false alarms appeared as the host
aircraft changing direction. The reason of these false alarms was that some static background
clutters were mis-identified as moving targets due to the relative movements. Therefore, it
should be possible to reduce the false alarm rate of our system by considering the movement
data of the host aircraft. If the movement data of host aircraft can be acquired as an input of our
system, then the tracking can be adjusted to compensate the movement of host aircraft, thus
improve the target detection. Besides, though the individual operations for the detection of
contracting targets were implemented successfully, extended work is still required to arrange,
connect, and optimize individual operations together into a complete system for the detection of

contracting targets.

43

Appendix

Al

Hardware specification of Datacube MaxPCI

Crosspoint backbone

@® 65x75 connections, each 8-bit.

® 55x61 additional 1 bit connections.

® All connections are independent and parallel for construction multiple parallel image
pipelines.

® Connections can be switched in real-time.

@® All run on system-wide synchronous 40 MHz pixel clock.

Arithmeteic Unit (AU)

® Two sets of AU in each MaxPClI

@ 6 (8-bit) inputs from main crosspoint architecture.

® 4 (8-bit) output to main crosspoint architecture.

® Internal crosspoint allows internal re-circulation and flexibility: 10x12 for data path
routing within AU, each 10-bit.

® Linear section: Process 10 bit data with 10-bit or 20-bit output

® Non-Linear section: 4 to 2 to 1 binary tree arrangement of 10-bit ALUs, or 2 to 1 for
20-bit data.

® Statistic section: Sum, min, max, count of incoming pixel values or positions.

Look-up Table (LUT)

Two sets of LUT in each MaxPCI, each LUT has 16-bit input, 16-bit output

LUT data can be loaded through either PCI bus or pipeline transfer from crosspoint.

Histogram Processor (HP)

1024 bin 24-bit increment bin accumulator
8-bit or 10-bit data histograms

24-bit row or column summing

44

® Can also be used as a 10x24 LUT or a 24-bit delay line
@ All bin accumulation data can be output to either PCI bus or pipeline transfer to
crosspoint.
Delay Elements (DLY)
® Two different delay elements.
® Programmable pipeline delay/buffer elements.

Processing and Storage Modules (PSMOD)

Each PSMOD has twelve 8-bit connections (4 input, 4 output, and 4 bidirectional) to
the crosspoint.
Large family of PSMOD:s available with continuous expansion.
Storage96 PSMOD equips six 16MB VSIMs
Convolver200 PSMOD supports arbitrary 200-points convolution kernels
General Purpose PSMOD
® Each module equips four complete AU devices.
® Two 16x16 LUTs
® Useful for complicate IP operations like grayscale morphology and median

filter.

45

A.2 The diagrams for all implemented obstacle

detection algorithms

v 4

0

Operation
R

v
(A) Magnitude Symbol

Output=Operation{Input! *P.Input2 *Q¥R

Operation

v
(B) Shift Symbol

Qutput(x,y)=Operation(Inputl (x+x 1, y+y | L.Input2(x+x2,y+y2})

Figure Al : Symbol Representation. All the figures in
this appendix follows these two symbol
representation. The symbol(A) represents that the first
inputl is multiplied by P and the second input is
multiplied by Q before performing the operation, then
the output of the operation is divided by R. The
symbol(B) represents that the first input is shifted by
(x1,yl) and the second input is shifted by (x2,y2)
before performing the operation.

46

Input (1Kx1K)

|

Pyramid Construction & Lowstop Filter

1 2 3 4 5 6
D.P. D.P. D.P. D.P. DP. || DP.
IKxiKY (Tkxikt (512512 (SE2xS12y {256x256) || 2568256

Maximum Maximum Maximum
(1024x1024) (512x512) (256x256)
A
Outputl Qutput2 Output3
(1024x1024) (512x512) (256x256)

Figure A2 : Algorithm I. Generally speaking,
this algorithm performs a lowstop filter (figure
A2-1) followed by six D.P. (Dynamic
Programming, figure A2-2) operations.

47

Input (1Kx1K)

Convolve
1Kx1K

Convolve
1KxIK

Subtract Subtract

S | ¥
] Outputl l I Output2|
Convolve Convolve
S512x512 512x512
Subtract Subtract
i

! ()utput3l I ()utput4J

Convolve Convolve
256x256 256x256
Subtract Subtract

Shrink L Y

l Output$ J I ()u[pllt6|

Expand

I
V I

Figure A2-1 : Pyramid Construction&Lowstop Filter

convolution mask:
3 16 24 16

|
| :
|ﬁ 24 36 24 [}
|4 16 24 16 4

!

48

Input

x3 N 3 x! x3 «1 A xl
Addition Addition Addition Addition
4 4 4 4
[L{X}}} (-1 [[iAY ({8} .0y -1 (1K) i
Maximum Maximum Maximum Maximum
(LKD) (1 (LAY i [LIXH] {-1.0 0.0y (-Lih
Maximum Maximum Maximum Maximum

Maximum

Figure A2-2 : Dynamic Programming.
Generally speaking, the dynamic programming
consists of four branches. Each branch
represents one zoom and is constructed by a
recursive averaging operation followed by two
maximum operations, each operation has four
inputs.

49

Input (1Kx1K)

i

Pyramid Construction

| 2 3
[y
Morphological Morphological Morphological
Filter Filter Filter
(1024x1024) (512x512) (256x256)
| ll 1 2 1 lZ
D.P. D.P. D.P. D.P. D.P. || D.P.
{TRxERY {Tkxtk) (512x512) (5128512 {256x258q) [] (28612561
A
Maximum Maximum Maximum
(1024x1024) (512x512) (256x256)
Output| Output2 Output3
(1024x1024) (512x512) (256x256)

Figure A3 : Algorithm II. Generally speaking,
this algorithm performs a pyramid construction
(figureA3-1) following by three mophological
filters (figureA3-2, A3-3) and six D.P. (Dynamic
Programming, figure A2-2) operations.

50

Input (1 Kx1K
-
IKx1K

Convolve
IKx1K
Shrink
Output2 . .
512%512 Convolution Mask:
Convolve SR T S B
S12x512 4 16 24 16 4;
624 36 24 6|
RRCEIRC 4]
Output3 14 6 4 1]
256x256

Figure A3-1 : Pyramid Construction. In order to
detect objects with different sizes, it’s necessary to
get information from the images with several
different resolutions. The pyramid construction is
used to generate four images with different
resolutions from the original image.

S1

[Dilate(1x3) | | Ditae3x1) | [Erode(1x3)] [Erode(3x1) |

[pitatet1x3)] | Ditate3x1) |

Maximum

[Frode(1x3)] | Erode(3x1)

Subtract Subtract

: }

Bulpulz l ‘ Outputl]

Figure A3-2 : Morphological Filter (High Level).

This figure shows the high level view of a
morphological filter. Both the dilation and erosion are
gray-level morphologic operations. The (1x3) or (3x1)
represents the size of the kernel of each morphologic
operation. The first output is equal to the original
image minus the image after opening operation, i.e.
dilation followed by erosion. The second output is
equal to the image after closing operation, i.e. erosion
followed by dilation, minus the original image.

wn
(8]

b [X AR iyt (XU R K
Maximum Maximum Minimum Minimum
(0.0 1,21 i (=240 hn 0,2 [URD) =200
Maximum Maximum Minimum Minimum
(i [{(RN] (0.0} {1 0.0 (NN .0 (1.0}
Minimum Minimum Maximum Maximum
W -2y 0y -2 0,0 -2 N -2
Minimum Minimum Maximum Maximum

Minimum Maximum

Subtract
v ¥
| Output2 I l Outputl l

Figure A3-3 : Morphological Filter (Low Level). This
figure shows the low level view of a morphological
filter. The inputs of each minimum or maximum
operation should be shifted according to two
coordinate inside the operation box.

53

Input

l

Spatial-Temporal Smoothing

|

Optical Flow Computation

\d

Spatial Consistency test

A 4
Temporal Consistency test

A

Output

Figure A4 : Algorithm III. Figure A4-1 shows the
spatial temporal smoothing and optical Flow
computation. Figure A4-2 shows the spatial
consistency test. Since the temporal consistency test
is only performed on some feature points, it can be
done on the host machine instead of on the MaxPCI.

54

input:f(t) Convolvel mask Convolve3 mask
2 1o -1 -2] !

\
Gausian (5x5) Convolve2 mask

Convolution 1o -1 27 ‘ :

¥ N ‘ ‘
v delay |— | delay |——y| delay [y delay
addition:F(0 F(i-1) F(1-2) Fi-3) Fi-d)

multiply || multiply

multiply || muliiply

multiply || multiply

subtract

D“ D l output2 | [ou!pul3 ID‘

Figure A4-1 : Spatial Temporal Smoothing &
Optical Flow Computation (#.v)=(D,/D,D, /D)

55

e

O {11y Ly g0-1y WM (e (h {10 (XN [CKLTRUND] .0 (-1.1y
Subtract Subtract Subtract Subtract Subtract Subtract Subtract

(0,0 -1
Subtract

(0.0 (-1.-1} A0 (l;lk'/l,»n (l;l{(lm (LY Ty 001 Q;%/M.h I {Hp-1m

Subtract Sybtract Spbtract Spibtract Sybtract Spbtract Spibtract Sgbtract
AN

Multiply /| Multiply £1 Multiply A| Muitiply

Add Add Add Add Add Add Add Add

Maximum Maximum Maximum

Figure A4-2 : Spatial Consistency

Frame(t+1) H Frame(t) H Frame(t-1) |

-

0

1

3013
4 20
4 2
313
17

o o0 o D o

16
24
16

14

26
168
6%

14
26
16¥
168

26

26
88
-8R
6
14

26

- &R
- 8%

26
14

oo oo 2 o @

— B B - O

i Subtraction

!

-{ Spatial Smoothing

!

‘ Subsampling by 2

|

{ Lowstop Filter

I

I Non-Maximum Suppressing

[Histogram Generation

|

| Automatic Threshold Selection

!

[Feature Extraction

v

| Tracking by host CPU

Figure AS : Algorithm IV. Figure A5 shows the
temporal differencing algorithm to detect the
translating target. Since the tracking is only

performed on some feature points, it can be done on

the host machine instead of on the MaxPClI.

57

Bibliography

[1] Derek Wood, “Jane’s World Aircraft Recognition Handbook”, Jane’s Information Group
Ltd., Coulsdon, UK, 1992.

[2] David Casasent and Angi Ye, “Detection Filters and Algorithm Fusion for ATR”, IEEE
Trans. on Image Processing, 6(1), 114-125, January 1997.

[3] James Arnold, Scott Shaw and Henry Pasternack, “Efficient Target Tracking using Dynamic
Programming”, IEEE Trans. on Aerospace and Electronic Systems, 29(1), 44-56, January
1993.

[4] J.S. Bird and M.M. Goulding, “Rate-constrained target detection.”, IEEE Trans. On
Aerospace and Electronic System, 28(2):491-503, April 1992.

[5] R. Kasturi, O. Camps, L. Coraor, K. Hartman, T. Gandhi, and M.T. Yang, “Performance
characterization of target detection algorithms for aircraft navigation.”, Technical report,
Dept. of Computer Science and Engineering, The Pennsylvania State University, 1998.

[6] P.J. Burt. “Fast filter transfroms for image processing.”, Computer Vision, Graphics and
Image Processing, 16:20-51, 1981.

[7] “Kodak megaplus camera model ES 1.0 optomechanical specification and imaging
performance specification”, Eastman Kodak Company, July, 1997.

“PC ImageFlow programmer’s manual”, Datacube Inc. January, 1999.

58

